Skip to main content
Log in

Effect of sodium–glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: a systematic review and meta-analysis

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

Background

Sodium–glucose cotransporter 2 inhibitors (SGLT2i) improve outcomes of patients with type 2 diabetes at high cardiovascular risk and chronic kidney disease. Recent studies showed an increase in hemoglobin and hematocrit after SGLT2i treatment.

Materials and methods

We did a systematic review and meta-analysis of randomized, double-blind, placebo-controlled studies of SGLT2i in patients with type 2 diabetes. We searched through PubMed/Medline, Web of Science, Embase (Elsevier), and the Cochrane Central Register of Controlled Trials (Wiley) from January 2010 to January 2021.

Results

We included seventeen randomized, double-blind, placebo-controlled studies. The total number of evaluated patients was 14,748. The treatment arm consisted of canagliflozin, dapagliflozin, empagliflozin and ipragliflozin. SGLT2i therapy significantly increased hemoglobin levels when compared to placebo (MD 5.60 g/L, 95% CI 3.73–7.47 g/L, P < 0.00001, considerable heterogeneity—I2 = 94%). Each SGLT2i also led to a significant increase in the hematocrit level when compared to placebo (MD 1.32%, 95% CI 1.21–1.44, P < 0.00001, considerable heterogeneity—I2 = 99%).

Conclusions

SGLT2i led to significant increases in hemoglobin and hematocrit levels when compared to placebo. In addition to their cardiovascular effect, SGLT2i also increases hemoglobin and hematocrit levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. Cherney DZ, Kanbay M, Lovshin JA (2020) Renal physiology of glucose handling and therapeutic implications. Nephrol Dial Transplant 35:i3–i12

    Article  CAS  Google Scholar 

  2. Fernandez-Fernandez B, Sarafidis P, Kanbay M, Navarro-Gonzalez JF, Soler MJ, Gorriz JL, Ortiz A (2020) SGLT2 inhibitors for non-diabetic kidney disease: drugs to treat CKD that also improve glycaemia. Clin Kidney J 13:728–733

    Article  CAS  Google Scholar 

  3. Kanbay M, Ertuglu LA, Afsar B, Ozdogan E, Kucuksumer ZS, Ortiz A, Covic A, Kuwabara M, Cherney DZI, van Raalte DH, de Zeeuw D (2019) Renal hyperfiltration defined by high estimated glomerular filtration rate: a risk factor for cardiovascular disease and mortality. Diabetes Obes Metab 21:2368–2383

    Article  Google Scholar 

  4. Yilmaz MI, Solak Y, Covic A, Goldsmith D, Kanbay M (2011) Renal anemia of inflammation: the name is self-explanatory. Blood Purif 32:220–225

    Article  Google Scholar 

  5. Kanbay M, Perazella MA, Kasapoglu B, Koroglu M, Covic A (2010) Erythropoiesis stimulatory agent- resistant anemia in dialysis patients: review of causes and management. Blood Purif 29:1–12

    Article  Google Scholar 

  6. Solak Y, Cetiner M, Siriopol D, Tarim K, Afsar B, Covic A, Kanbay M (2016) Novel masters of erythropoiesis: hypoxia inducible factors and recent advances in anemia of renal disease. Blood Purif 42:160–167

    Article  CAS  Google Scholar 

  7. Copur S, Onal EM, Afsar B, Ortiz A, van Raalte DH, Cherney DZ, Rossing P, Kanbay M (2020) Diabetes mellitus in chronic kidney disease: Biomarkers beyond HbA1c to estimate glycemic control and diabetes-dependent morbidity and mortality. J Diabetes Complicat 34:107707

    Article  Google Scholar 

  8. Maruyama T, Takashima H, Oguma H, Nakamura Y, Ohno M, Utsunomiya K, Furukawa T, Tei R, Abe M (2019) Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technol Ther 21:713–720

    Article  CAS  Google Scholar 

  9. Kovacs CS, Seshiah V, Swallow R, Jones R, Rattunde H, Woerle HJ, Broedl UC, investigators E-RPt (2014) Empagliflozin improves glycaemic and weight control as add-on therapy to pioglitazone or pioglitazone plus metformin in patients with type 2 diabetes: a 24-week, randomized, placebo-controlled trial. Diabetes Obes Metab 16:147–158

    Article  CAS  Google Scholar 

  10. List JF, Woo V, Morales E, Tang W, Fiedorek FT (2009) Sodium–glucose cotransport inhibition with dapagliflozin in type 2 diabetes. Diabetes Care 32:650–657

    Article  CAS  Google Scholar 

  11. Bailey CJ, Iqbal N, T’Joen C, List JF (2012) Dapagliflozin monotherapy in drug-naive patients with diabetes: a randomized-controlled trial of low-dose range. Diabetes Obes Metab 14:951–959

    Article  CAS  Google Scholar 

  12. O’Neill J, Fasching A, Pihl L, Patinha D, Franzen S, Palm F (2015) Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats. Am J Physiol Renal Physiol 309:F227-234

    Article  CAS  Google Scholar 

  13. Rosenstock J, Aggarwal N, Polidori D, Zhao Y, Arbit D, Usiskin K, Capuano G, Canovatchel W, Canagliflozin DIASG (2012) Dose-ranging effects of canagliflozin, a sodium–glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care 35:1232–1238

    Article  CAS  Google Scholar 

  14. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25:603–605

    Article  Google Scholar 

  15. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, Savovic J, Schulz KF, Weeks L, Sterne JA, Cochrane Bias Methods G, Cochrane Statistical Methods G (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

    Article  Google Scholar 

  16. Higgins JPTTJ, Chandler J, Cumpston M, Li T, Page MJ, Welch VA (eds) (2019) Cochrane handbook for systematic reviews of interventions, 2nd edn. Wiley, Chichester

    Google Scholar 

  17. DerSimonian R, Kacker R (2007) Random-effects model for meta-analysis of clinical trials: an update. Contemp Clin Trials 28:105–114

    Article  Google Scholar 

  18. Haring HU, Merker L, Seewaldt-Becker E, Weimer M, Meinicke T, Woerle HJ, Broedl UC, Investigators E-RMT (2013) Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebo-controlled trial. Diabetes Care 36:3396–3404

    Article  CAS  Google Scholar 

  19. Strojek K, Yoon KH, Hruba V, Elze M, Langkilde AM, Parikh S (2011) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with glimepiride: a randomized, 24-week, double-blind, placebo-controlled trial. Diabetes Obes Metab 13:928–938

    Article  CAS  Google Scholar 

  20. Bailey CJ, Gross JL, Pieters A, Bastien A, List JF (2010) Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebo-controlled trial. Lancet 375:2223–2233

    Article  CAS  Google Scholar 

  21. Bolinder J, Ljunggren O, Kullberg J, Johansson L, Wilding J, Langkilde AM, Sugg J, Parikh S (2012) Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab 97:1020–1031

    Article  CAS  Google Scholar 

  22. Bode B, Stenlof K, Sullivan D, Fung A, Usiskin K (1995) Efficacy and safety of canagliflozin treatment in older subjects with type 2 diabetes mellitus: a randomized trial. Hosp Pract 2013(41):72–84

    Google Scholar 

  23. Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF (2010) Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care 33:2217–2224

    Article  Google Scholar 

  24. Kaku K, Inoue S, Matsuoka O, Kiyosue A, Azuma H, Hayashi N, Tokudome T, Langkilde AM, Parikh S (2013) Efficacy and safety of dapagliflozin as a monotherapy for type 2 diabetes mellitus in Japanese patients with inadequate glycaemic control: a phase II multicentre, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab 15:432–440

    Article  CAS  Google Scholar 

  25. Lavalle-Gonzalez FJ, Januszewicz A, Davidson J, Tong C, Qiu R, Canovatchel W, Meininger G (2013) Efficacy and safety of canagliflozin compared with placebo and sitagliptin in patients with type 2 diabetes on background metformin monotherapy: a randomised trial. Diabetologia 56:2582–2592

    Article  CAS  Google Scholar 

  26. Rosenstock J, Vico M, Wei L, Salsali A, List JF (2012) Effects of dapagliflozin, an SGLT2 inhibitor, on HbA(1c), body weight, and hypoglycemia risk in patients with type 2 diabetes inadequately controlled on pioglitazone monotherapy. Diabetes Care 35:1473–1478

    Article  CAS  Google Scholar 

  27. Stenlof K, Cefalu WT, Kim KA, Alba M, Usiskin K, Tong C, Canovatchel W, Meininger G (2013) Efficacy and safety of canagliflozin monotherapy in subjects with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab 15:372–382

    Article  CAS  Google Scholar 

  28. Wilding JP, Ferrannini E, Fonseca VA, Wilpshaar W, Dhanjal P, Houzer A (2013) Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab 15:403–409

    Article  CAS  Google Scholar 

  29. Wilding JP, Woo V, Soler NG, Pahor A, Sugg J, Rohwedder K, Parikh S, Dapagliflozin 006 Study G (2012) Long-term efficacy of dapagliflozin in patients with type 2 diabetes mellitus receiving high doses of insulin: a randomized trial. Ann Intern Med 156:405–415

    Article  Google Scholar 

  30. Yale JF, Bakris G, Cariou B, Yue D, David-Neto E, Xi L, Figueroa K, Wajs E, Usiskin K, Meininger G (2013) Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab 15:463–473

    Article  CAS  Google Scholar 

  31. Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE, Investigators E-RO (2015) Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 373:2117–2128

    Article  CAS  Google Scholar 

  32. Rangaswami J, Bhalla V, de Boer IH, Staruschenko A, Sharp JA, Singh RR, Lo KB, Tuttle K, Vaduganathan M, Ventura H, McCullough PA, American Heart Association Council on the Kidney in Cardiovascular D, Council on Arteriosclerosis T, Vascular B, Council on C, Stroke N, Council on Clinical C, Council on L, Cardiometabolic H (2020) Cardiorenal protection with the newer antidiabetic agents in patients with diabetes and chronic kidney disease: a scientific statement from the American Heart Association. Circulation 142:e265–e286

    Article  CAS  Google Scholar 

  33. Yerlikaya A, Bulbul MC, Afsar B, Dagel T, Aslan G, Voroneanu L, Siriopol D, Covic A, Kanbay M (2018) Iron in kidney and heart failure: from theory to practice. Int Urol Nephrol 50:481–493

    Article  CAS  Google Scholar 

  34. Afsar B, Kanbay M, Afsar RE (2020) Hypoxia inducible factor-1 protects against COVID-19: a hypothesis. Med Hypotheses 143:109857

    Article  CAS  Google Scholar 

  35. Lawler PR, Liu H, Frankfurter C, Lovblom LE, Lytvyn Y, Burger D, Burns KD, Brinc D, Cherney DZI (2021) Changes in cardiovascular biomarkers associated with the sodium–glucose cotransporter 2 (SGLT2) inhibitor ertugliflozin in patients with chronic kidney disease and type 2 diabetes. Diabetes Care 2021 Mar;44(3):e45-e47. https://doi.org/10.2337/dc20-2265

    Article  CAS  PubMed  Google Scholar 

  36. Packer M (2020) Mutual antagonism of hypoxia-inducible factor isoforms in cardiac, vascular, and renal disorders.JACC Basic Transl Sci 5:961–968

    Article  Google Scholar 

  37. Bessho R, Takiyama Y, Takiyama T, Kitsunai H, Takeda Y, Sakagami H, Ota T (2019) Hypoxia-inducible factor-1alpha is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 9:14754

    Article  Google Scholar 

  38. Ghanim H, Abuaysheh S, Hejna J, Green K, Batra M, Makdissi A, Chaudhuri A, Dandona P (2020) Dapagliflozin suppresses hepcidin and increases erythropoiesis. J Clin Endocrinol Metab. 2020 Apr 1; 105(4):dgaa057

    Article  Google Scholar 

  39. Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J (2013) Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 15:853–862

    Article  CAS  Google Scholar 

  40. Afsar B, Hornum M, Afsar RE, Ertuglu LA, Ortiz A, Covic A, van Raalte DH, Cherney DZI, Kanbay M (2021) Mitochondrion-driven nephroprotective mechanisms of novel glucose lowering medications. Mitochondrion 58:72–82

    Article  CAS  Google Scholar 

Download references

Acknowledgements

MK gratefully acknowledges the use of the services and facilities of the Koc University Research Center for Translational Medicine (KUTTAM), funded by the Presidency of Turkey, Presidency of Strategy and Budget. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Presidency of Strategy and Budget.

Funding

AC, LT and CU gratefully acknowledge the grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI-UEFISCDI, project number PN-III-P4-ID-PCE-2020-2393, within PNCDIII.

Author information

Authors and Affiliations

Authors

Contributions

Contributed substantially to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work: AC, EC, CT, AD, CU, LT and MK. Drafted the work or revised it critically for important intellectual content: BA, AC, DC, AO and MK. Approved the final version to be published: AC, EC, CT, AD, CU, LT, DC and MK.

Corresponding author

Correspondence to Mehmet Kanbay.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanbay, M., Tapoi, L., Ureche, C. et al. Effect of sodium–glucose cotransporter 2 inhibitors on hemoglobin and hematocrit levels in type 2 diabetes: a systematic review and meta-analysis. Int Urol Nephrol 54, 827–841 (2022). https://doi.org/10.1007/s11255-021-02943-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-021-02943-2

Keywords

Navigation