Skip to main content

Advertisement

Log in

From ureteric bud to the first glomeruli: genes, mediators, kidney alterations

  • Nephrology - Review
  • Published:
International Urology and Nephrology Aims and scope Submit manuscript

Abstract

The development of the mammalian kidney is a complex and in part unknown process which requires interactions between pluripotential/stem cells, undifferentiated mesenchymal cells, epithelial and mesenchymal components, eventually leading to the coordinate development of multiple different specialized epithelial, endothelial and stromal cell types within the kidney architectural complexity. We will describe the embryology and molecular nephrogenetic mechanisms, a fascinating traffic of cells and tissues which takes place in five stages: (1) ureteric bud (UB) development; (2) cap mesenchyme formation; (3) mesenchymal–epithelial transition (MET); (4) glomerulogenesis and tubulogenesis; (5) interstitial cell development. In particular, we will analyze the multiple cell types involved in these dramatic events as characters moving between different worlds, from the mesenchymal to the epithelial world and back, and will start to define the multiple factors that propel these cells during their travels throughout the developing kidney. Moreover, according with the hypothesis of renal perinatal programing, we will present the results reached in the fields of immunohistochemistry and molecular biology, by means of which we can explain how a loss or excess of molecular factors governing nephrogenesis may cause the onset of pathologies of different gravity, in some cases leading to a chronic kidney disease at different times from birth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P et al (2011) Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol 227:1257–1268

    Article  Google Scholar 

  2. Fanni D, Gerosa C, Nemolato S, Mocci C, Pichiri G, Coni P et al (2012) “Physiological” renal regenerating medicine in VLBW preterm infants: could a dream come true? J Matern Fetal Neonatal Med 25(3):41–48

    Article  PubMed  Google Scholar 

  3. Schoenwolf GC, Bleyl SB, Brauer PR, Francis-West PH (2008) Larsen’s human embryology. Churchill Livingstone/Elsevier, Philadelphia

    Google Scholar 

  4. Watanabe T, Costantini F (2004) Real-time analysis of ureteric bud branching morphogenesis in vitro. Dev Biol 271:98–108

    Article  CAS  PubMed  Google Scholar 

  5. Yosypiv IV (2008) A new role for the renin-angiotensin system in the development of the ureteric bud and renal collecting system. Keio J Med 57:184–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Reidy K, Rosenblum N (2009) Cell and molecular biology of kidney development. Semin Nephrol 29:321–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Michos O, Cebrian C, Hyink D, Grieshamer U, Williams L, D’Agati V et al (2010) Kidney development in the absence of Gdnf and Spry I requires Fgf10. PLoS Genet 6:e1000809

    Article  PubMed Central  PubMed  Google Scholar 

  8. Moritz K, Wintour E, Black M, Bertram J, Caruana G (2008) Factors influencing mammalian kidney development: implications for health in adult life. Adv Anat Embryol Cell Biol 196:1–78

    CAS  PubMed  Google Scholar 

  9. Jain S (2009) The many faces of RET dysfunction in kidney. Organogenesis 5:177–190

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zhang M, Wang J, Cheng H, Harris R (1997) McKanna. cyclooxygenase-2 in rat nephron development. Am J Physiol 273:F994–F1002

    CAS  PubMed  Google Scholar 

  11. Schedl A, Reginensi A, Clarkson M, Lu B.(2010) Role of SOX genes during kidney development. In: 11th International Workshop on Developmental Nephrology Proceedings, New York, Abstract O-30

  12. Basson M, Akbulut S, Watson-Johnson J, Simon R, Carroll T, Shakya R et al (2005) Sprouty 1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8:229–239

    Article  CAS  PubMed  Google Scholar 

  13. Miyazaki Y, Oshima K, Fogo A, Hogan B, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105:863–873

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Reidy K, Villegas G, Teichman J, Veron D, Shen W, Jimenez JT et al (2009) Semaphorin3a regulates endothelial cell number and podocyte differentiation during glomerular development. Development 136:3979–3989

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Marose T, Merkel C, McMahon A, Carroll T (2008) Beta-catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Dev Biol 314:112–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Grote D, Souabni A, Busslinger M, Bouchard M (2006) Pax 2/8-regulated Gata 3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development 133:53–61

    Article  CAS  PubMed  Google Scholar 

  17. Hopkins C, Ineson J, Little M.(2010) Functional conversion of the human kidney epithelial cells to renal progenitors requires more than generalized epigenetic destabilization. In: 11th International Workshop on Developmental Nephrology Proceedings, New York, Abstract P-6

  18. Welham S, Riley P, Wade A, Hubank M, Woolf A (2005) Maternal diet programs embryonic kidney gene expression. Physiol Genomics 22:48–56

    Article  CAS  PubMed  Google Scholar 

  19. Singh R, Moritz K, Bertram J, Cullen-McEwen L (2007) Effects of dexamethasone exposure on rat metanephric development: in vitro and in vivo studies. Am J Physiol Renal Physiol 293:F548–F554

    Article  CAS  PubMed  Google Scholar 

  20. Simeoni U, Ligi I, Buffat C, Boubred F (2010) Adverse consequences of accelerated neonatal growth: cardiovascular and renal issues. Pediatr Nephrol. doi:10.1007/s00467-010-1648-1

    PubMed  Google Scholar 

  21. Cohen T, Loutochin O, Amin M, Capolicchio J, Goodyer P, Jednak R (2007) PAX2 is reactivated in urinary tract obstruction and partially protects collecting duct cells from programmed cell death. Am J Physiol Renal Physiol 292:F1267–F1273

    Article  CAS  PubMed  Google Scholar 

  22. Benetti E, Artifoni L, Salviati L, Pinello L, Perrotta S, Zuffardi O, Zacchello G, Murer L (2007) Renal hypoplasia without optic coloboma associated with PAX2 gene detection. Nephrol Dial Transplant 22(7):2076–2078

    Article  CAS  PubMed  Google Scholar 

  23. Salomon R, Tellier AL, Attie-Bitach T et al (2001) PAX2 mutations in oligomeganephronia. Kidney Int 59:457–462

    Article  CAS  PubMed  Google Scholar 

  24. Fletcher J, Hu M, Berman Y et al (2005) Multicystic dysplastic kidney and variable phenotype in a family with a novel deletion mutation of PAX2. J Am Soc Nephrol 16:2754–2761

    Article  CAS  PubMed  Google Scholar 

  25. Weber S, Moriniere V, Knuppel T et al (2006) Prevalence of mutations in renal developmental genes in children with renal hypoplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  26. Schimmenti LA, Cunliffe HE, McNoe LA et al (1997) Further delineation of renal-coloboma syndrome in patients with remarkable variability of phenotype and identical PAX2 mutations. Am J Hum Genet 60:869–878

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Scott JE, Renwick M (1988) Antenatal diagnosis of congenital abnormalities in the urinary tract. Results from the Northern Region Fetal Abnormality Survey. Br J Urol 62:295–300

    Article  CAS  PubMed  Google Scholar 

  28. Nishimura H, Yerkes E, Hohenfellner K, Miyazaki Y, Ma J, Hunley TE, Yoshida H, Ichiki T, Threadgill D, Phillips JA 3rd, Hogan BM, Fogo A, Brock JW 3rd, Inagami T, Ichikawa I (1999) Role of the angiotensin type 2 receptor gene in congenital anomalies of the kidney and urinary tract, CAKUT, of mice and men. Mol Cell 3:1–10

    Article  CAS  PubMed  Google Scholar 

  29. Niimura F, Kon V, Ichikawa I (2006) The renin-angiotensin system in the development of the congenital anomalies of the kidney and urinary tract. Curr Opin Pediatr 18:161–166

    Article  PubMed  Google Scholar 

  30. Perantoni A, Dove L, Karavanova I (1995) Basic fibroblast growth factor can mediate the early inductive events in renal development. Proc Natl Acad Sci USA 92:4696–4700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Poladia D, Kish K, Kutay B, Hains D, Kegg H, Zhao H et al (2006) Role of fibroblast growth factor receptors 1 and 2 in the metanephric mesenchyme. Dev Biol 291:325–339

    Article  CAS  PubMed  Google Scholar 

  32. Lelongt B, Trugnan G, Murphy G, Ronco P (1997) Matrix metalloproteinases MMP2 and MMP9are produced in early stages of kidney morphogenesis but onlyMMP9is required for renal organogenesis in vitro. J Cell Biol 136:1363–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Arnould C, Lelièvre-Pégorier M, Ronco P, Lelongt B (2009) MMP9 limits apoptosis and stimulates branching morphogenesis during kidney development. J Am Soc Nephrol 20(10):2171–2180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Kuure S, Cebrian C, Machingo Q, Lu B, Chi X, Hyink D et al (2010) Actin depolymerizing factors Cofilin1 and Destrin are required for ureteric bud branching morphogenesis. PLoS Genet 6:e1001176

    Article  PubMed Central  PubMed  Google Scholar 

  35. Rosenblum N (2008) Developmental biology of the human kidney. Semin Nephrol 13:125–132

    Google Scholar 

  36. Boyle S, Misfeldt A, Chandler K, Deal K, Southard-Smith E, Mortlock D et al (2008) Fate mapping using Cited I-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Dev Biol 313:234–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Osafune K, Takasato M, Kispert A, Asashima M, Nishinakamura R (2006) Identification of multipotent progenitors in the embryonic mouse kidney by a novel colony-forming assay. Development 133:151–161

    Article  CAS  PubMed  Google Scholar 

  38. Kobayashi A, Valerius M, Mugford J, Carroll T, Self M, Oliver G et al (2008) Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell Stem Cell 3:169–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Nishinakamura R, Takasato M (2005) Essential roles of Sall1 in kidney development. Kidney Int 68:1948–1950

    Article  CAS  PubMed  Google Scholar 

  40. Weber S, Moriniere V, Knuppel T et al (2006) Prevalence of mutations in renal developmental genes in children with renal hypoplasia: results of the ESCAPE study. J Am Soc Nephrol 17:2864–2870

    Article  CAS  PubMed  Google Scholar 

  41. Townes PL, Brocks ER (1972) Hereditary syndrome of imperforate anus with hand, foot and ear anomalies. J Pediatr 8:321–326

    Article  Google Scholar 

  42. Serville F, Lacombe D, Saura R, Billeaud C, Sergent MP (1993) Townes–Brocks syndrome in an infant with translocation t(5;16). Genet Couns 4:109–112

    CAS  PubMed  Google Scholar 

  43. O’Callaghan M, Young ID (1995) Townes–Brocks syndrome. In: Donnai D, Winter R (eds) Congenital malformation syndromes. London, Chapman and Hall, pp 326–332

    Google Scholar 

  44. Wischermann A, Holschneider AM (1997) Townes–Brocks-syndrome. Monatsschr Kinderheilkd. 145:382–386

    Article  Google Scholar 

  45. Kohlhase J, Taschner PE, Burfeind P, Pasche B, Newman B, Blanck C, Breuning MH, ten Kate LP, Maaswinkel-Mooy P, Mitulla B et al (1999) Molecular analysis of SALL1 mutations in Townes–Brocks syndrome. Am J Hum Genet 64:435–445

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Mugford J, Yu J, Kobayashi A, McMahon A (2009) High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Dev Biol 333:312–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Mudumana S, Hentschel D, Liu Y, Vasilyev A, Drummond I (2008) Odd skipped related1 reveals a novel role for endoderm in regulating kidney versus vascular cell fate. Development 135(20):3355–3367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Self M, Lagutin O, Bowling B, Hendrix J, Cai Y, Dressler G et al (2006) Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. EMBO J 25:5214–5228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kreidberg J (2010) WT1 and kidney progenitor cells. Organogenesis 6:61–70

    Article  PubMed Central  PubMed  Google Scholar 

  50. Call KM et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60:509–520

    Article  CAS  PubMed  Google Scholar 

  51. Gessler M et al (1990) Homozygous deletion in Wilms’ tumor of a zinc-finger gene identified by chromosome jumping. Nature 343:774–778

    Article  CAS  PubMed  Google Scholar 

  52. Pritchard-Jones K et al (1990) The candidate Wilms’ tumour gene is involved in genitourinary development. Nature 346:194–197

    Article  CAS  PubMed  Google Scholar 

  53. Fanni D, Fanos V, Monga G, Gerosa C, Locci A, Nemolato S et al (2011) Expression of WT1 during normal human kidney development. J Matern Fetal Neonatal Med 24(2):45–48

    CAS  Google Scholar 

  54. Luo G, Hofmann C, Bronckers A, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis and is also required for eye development and skeletal patterning. Genes Dev 9:2808–2820

    Article  CAS  PubMed  Google Scholar 

  55. Palmer R, Kotsianti A, Cadman B, Boyd T, Gerald W, Haber D (2001) WT1 regulates the expression of the major glomerular podocyte membrane protein Podocalyxin. Curr Biol 11(22):1805–1809

    Article  CAS  PubMed  Google Scholar 

  56. Wagner N, Wagner K, Xing Y, Scholz H, Schedl A (2004) The major podocyte protein nephrin is transcriptionally activated by the Wilms’ tumor suppressor WT1. J Am Soc Nephrol 15(12):3044–3051

    Article  PubMed  Google Scholar 

  57. Ryan G, Steele-Perkins V, Morris J, Rauscher F 3rd, Dressler GR (1995) Repression of PAX-2 by WT1 during normal kidney development. Development 121(3):867–875

    CAS  PubMed  Google Scholar 

  58. Chugh SS (2007) Transcriptional regulation of podocyte disease. Transl Res 149:237–242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Pelletier J, Bruening W, Kashtan C, Mauer S, Manivel J, Striegel J et al (1991) Germline mutations in the Wilms’ tumor suppressor gene are associated with abnormal urogenital development in Denys–Drash syndrome. Cell 67:437–447

    Article  CAS  PubMed  Google Scholar 

  60. Barbaux S, Niaudet P, Gubler M, Grunfeld J, Jaubert F, Kuttenn F et al (1997) Donor splice-site mutations in WT1 are responsible for Frasier syndrome. Nat Genet 17:467–470

    Article  CAS  PubMed  Google Scholar 

  61. Barisoni L, Kriz W, Mundel P, D’Agati V (1999) The dysregulated podocyte phenotype: a novel concept in the pathogenesis of collapsing idiopathic focal segmental glomerulosclerosis and HIV-associated nephropathy. J Am Soc Nephrol 10:51–61

    CAS  PubMed  Google Scholar 

  62. Orloff MS, Iyengar SK, Winkler CA, Goddard KA, Dart RA, Ahuja TS et al (2005) Variants in the Wilms’ tumor gene are associated with focal segmental glomerulosclerosis in the African American population. Physiol Genomics 21:212–221

    Article  CAS  PubMed  Google Scholar 

  63. Frasier S, Bashore RA, Mosier HD (1964) Gonadoblastoma associated with pure gonadal dysgenesis in monozygotic twins. J Pediatr 64:740–745

    Article  CAS  PubMed  Google Scholar 

  64. Haning RV, Chesney RW, Moorthy AV, Gilbert EF (1985) A syndrome of chronic renal failure and XY gonadal dysgenesis in young phenotypic females without genital ambiguity. Am J Kidney Dis 6:40–48

    Article  PubMed  Google Scholar 

  65. Kinberg JA, Angle CR, Wilson RB (1987) Nephropathy-gonadal dysgenesis, type 2: renal failure in three siblings with dysgenesis in one. Am J Kidney Dis 9:507–510

    Article  CAS  PubMed  Google Scholar 

  66. Moorthy AV, Chesney RW, Lubinsky M (1987) Chronic renal failure and XY gonadal dysgenesis: “Frasier” syndrome— commentary on reported cases. Am J Med Genet 3:297–302

    Article  CAS  Google Scholar 

  67. Perantoni A, Timofeeva O, Naillat F, Richman C, Pajni-Underwood S, Wilson C et al (2005) Inactivation of FGF8 in early mesoderm reveals an essential role in kidney development. Development 132:3859–3871

    Article  CAS  PubMed  Google Scholar 

  68. Kispert A, Vainio S, McMahon A (1998) Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 125:4225–4234

    CAS  PubMed  Google Scholar 

  69. Karner C, Chirumamilla R, Aoki S, Igarashi P, Wallingford J, Carroll T (2009) Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nat Genet 41(7):793–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Fanni D, Fanos V, Monga G, Gerosa C, Nemolato L, Van Eyken P et al (2011) MUC1 in mesenchymal-to-epithelial transition during human nephrogenesis: changing the fate of renal progenitor/stem cells? J Matern Fetal Neonatal Med 24(2):63–66

    Article  PubMed  Google Scholar 

  71. Little M, Brennan J, Georgas K, Davies J, Davidson D, Baldock R et al (2007) A high-resolution anatomical ontology of the developing murine genitourinary tract. Gene Expr Patterns 7:680–699

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Naruse K, Fujieda M, Miyazaki E, Hayashi Y, Toi M, Fukui T et al (2000) An immunohistochemical study of developing glomeruli in human fetal kidneys. Kidney Int 57:1836–1846

    Article  CAS  PubMed  Google Scholar 

  73. Thony H, Luethy C, Zimmermann A, Laux-End R, Oetliker O, Bianchetti M (1995) Histological features of glomerular immaturity in infants and small children with normal or altered tubular function. Eur J Pediatr 154:S65–S68

    Article  CAS  PubMed  Google Scholar 

  74. Bernstein J, Risdon RA (1997) Renal system. In: Gilbert-Barness E (ed) Potter’s Pathology of the Fetus and Infant. Mosby, St Louis, pp 863–866

    Google Scholar 

  75. Rodriguez M, Gomez A, Abitbol C, Chandar J, Duara S, Zilleruelo G (2004) Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr Dev Pathol 7:17–25

    Article  PubMed  Google Scholar 

  76. Surendran K, Boyle S, Barak H, Kim M, Stromberski C, McCright B et al (2010) The contribution of NOTCH1to nephron segmentation in the developing kidney is revealed in a sensitized NOTCH2 background and can be augmented by reducing mint dosage. Dev Biol 337:386–390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, Qi M, Trask BJ, Kuo WL, Cochran J, Costa T, Pierpont MEM, Rand EB, Piccoli DA, Hood L, Spinner NB (1997) Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet 16:243–251

    Article  CAS  PubMed  Google Scholar 

  78. Oda T, Elkahlous AG, Pike BL, Okajima K, Krantz ID, Genin A, Piccoli DA, Meltzer PM, Spinner NB, Collins FS, Chandrasekharappa SC (1997) Mutations in the human Jagged1gene are responsible for Alagille syndrome. Nat Genet 16:235–242

    Article  CAS  PubMed  Google Scholar 

  79. McDaniell R, Warthen DM, Sanchez-Lara PA, Pai A, Krantz ID, Piccoli DA, Spinner NB (2006) NOTCH2 mutations cause Alagille Syndrome, a heterogeneous disorder of the notch signaling pathway. Am J Hum Genet 79(1):169–173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP (1987) Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110:195–200

    Article  CAS  PubMed  Google Scholar 

  81. Harendza S, Hubner CA, Glaser C, Burdelski M, Thaiss F, Hansmann I, Gal A, Stahl RAK (2005) Renal failure and hypertension in Alagille syndrome with a novel JAG1 mutation. J Nephrol 18:312–317

    CAS  PubMed  Google Scholar 

  82. Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA (1999) Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29:822–829

    Article  CAS  PubMed  Google Scholar 

  83. Fonseca Ferraz M, Dos Santos AC, Rossi R, Correa R, Dos Reis M, de Paula Antunes Teixeira V (2008) Histochemical and immunohistochemical study of the glomerular development in human fetuses. Pediatr Nephrol 23:257–262

    Article  PubMed  Google Scholar 

  84. Reidy K, Tufro A (2011) Semaphorins in kidney development and disease: modulators of ureteric bud branching, vascular morphogenesis, and podocyte-endothelial crosstalk. Pediatr Nephrol 26:1407–1412

    Article  PubMed Central  PubMed  Google Scholar 

  85. Faa G, Gerosa C, Fanni D, Nemolato S, Marinelli V, Locci A et al (2011) CD10 in the developing human kidney: immunoreactivity and possible role in renal embryogenesis. J Matern Fetal Neonatal Med 25(7):904–911

    Article  Google Scholar 

  86. Papandreu CN, Nanus DM (2010) Is methylation the key to CD10 loss? J Pediatr Hematol Oncol 32:2–3

    Article  Google Scholar 

  87. Avery AK, Beckstead J, Renshaw AA, Corless CL (2000) Use of antibodies to RCC and CD10 in the differential diagnosis of renal neoplasms. Am J Surg Pathol 24:203–210

    Article  CAS  PubMed  Google Scholar 

  88. Faa G, Gerosa C, Fanni D, Nemolato S, Monga G, Fanos V. Kidney embryogenesis: how to look at old things with new eyes. In: Fanos V, Chevalier RL, Faa G, Cataldi L (2011) Developmental Nephrology: From Embryology to Metabolomics, Chapter 1. Hygeia Press, Quartu S. Elena (Ca), Italy, pp 21–45

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilios Fanos.

Additional information

Vassilios Fanos and Cristina Loddo have contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanos, V., Loddo, C., Puddu, M. et al. From ureteric bud to the first glomeruli: genes, mediators, kidney alterations. Int Urol Nephrol 47, 109–116 (2015). https://doi.org/10.1007/s11255-014-0784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11255-014-0784-0

Keywords