Skip to main content
Log in

On Completely Integrable Calogero-Type Discretizations of Nonlinear Lax Integrable Dynamical Systems and Related Markov-Type Coadjoint Orbits

  • Published:
Ukrainian Mathematical Journal Aims and scope

The Calogero-type matrix discretization scheme is applied to the construction of Lax-type integrable discretizations of one sufficiently wide class of nonlinear integrable dynamical systems on functional manifolds. Their Lie-algebraic structure and complete integrability related to the coadjoint orbits on the Markov coalgebras is discussed. It is shown that the set of conservation laws and the associated Poisson structure are obtained as a byproduct of the proposed approach. Based on the quasirepresentation property of Lie algebras, we demonstrate the limiting procedure of finding nonlinear dynamical systems on the corresponding functional spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ablowitz and J. Ladik, “Nonlinear differential-difference equations,” J. Math. Phys., 16, No. 3, 598–603 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Abraham and J. Marsden, Foundation of Mechanics, Benjamin/Cummings Publ. Co., Massachusets (1978).

    Google Scholar 

  3. M. Adler, “On a trace functional for formal pseudo-differential operators and the symplectic structures of a Korteweg–de Vries equation,” Invent. Math., 50, 219–248 (1979).

    Article  MATH  Google Scholar 

  4. V. I. Arnold, Mathematical Methods of Classical Mechanics, Springer, New York (1978).

    Book  MATH  Google Scholar 

  5. M. Blaszak, Multi-Hamiltonian Theory of Dynamical Systems, Springer (1998).

  6. D. Blackmore, A. K. Prykarpatsky, and V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis, World Scientific, New York (2012).

  7. D. Blackmore and A. K. Prykarpatsky, “Dark equations and their light integrability,” J. Nonlinear Math. Phys., 21, No. 3, 407–428 (2014).

    Article  MathSciNet  Google Scholar 

  8. F. Calogero and E. Franco, “Numerical tests of a novel technique to compute the eigenvalues of differential operators,” Nuovo Cim. B, 89, 161–208 (1985).

    Article  MathSciNet  Google Scholar 

  9. F. Calogero and A. Degasperis, Spectral Transform and Solitons, North-Holland, Amsterdam (1982).

    MATH  Google Scholar 

  10. J. Cavalcante and H. P. Mc. Kean, “The classical shallow-water equations,” Physica D, 4, No. 2, 253–260 (1982).

  11. J. L. Cieslinski and A. K. Prykarpatski, “Discrete approximations on functional classes for the integrable nonlinear Schrdinger dynamical system: a symplectic finite-dimensional reduction approach,” J. Math. Anal. Appl., 430, No. 1, 279–295 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Contesou, “La ℂ*-algebra d’une quasi-representation,” C. R. Acad. Sci. A, 324, 293–295 (1997).

    Google Scholar 

  13. A. Connes, M. Gromov, and H. Moscovici, “Conjecture de Novikov et fibres presque plats,” C. R. Acad. Sci. A, 310, 273–277 (1990).

    MathSciNet  MATH  Google Scholar 

  14. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Method in the Theory of Solitons, Springer, Berlin–Heidelberg (1987).

    Book  Google Scholar 

  15. B. Kostant, “The solutions to a generalized Toda lattice and representation theory,” Adv. Math., 34, 195–338 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. A. Kupershmidt, “Discrete Lax equations and differential-difference calculus,” Asterisque, 123, 5–212 (1985).

    MathSciNet  MATH  Google Scholar 

  17. B. A. Kupershmidt, “Dark equations,” J. Nonlin. Math. Phys., 8, 363–445 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  18. A.V. Lebedev, “Quasi-crossed products and an isomorphism theorem for C *-algebras associated with discrete group representations,” Dokl. AN SSSR, 10, No. 5, 40–43 (1996).

    MATH  Google Scholar 

  19. G. Menon, “Complete integrability of Shock Clustering and Burgers turbulence,” Arch. Ration. Mech. Anal., 203, 853–882 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Newell, Solitons in Mathematics and Physics, SIAM, Philadelphia (1986).

    MATH  Google Scholar 

  21. J. von Neumann, Mathematische Grundlagen der Quanten Mechanik, Springer, Berlin (1932).

    Google Scholar 

  22. M. Lustyk, J. Janus, M. Pytel-Kudela, and A. K. Prykarpatsky, “The solution existence and convergence analysis for linear and nonlinear differential-operator equations in Banach spaces within the Calogero type projection-algebraic scheme of discrete approximations,” Centr. Eur. J. Math., 7, No. 3, 775–786 (2009).

    MathSciNet  MATH  Google Scholar 

  23. S. P. Novikov (Editor), Theory of Solitons, Springer, Berlin (1984).

    Google Scholar 

  24. P. Olver, Applications of Lie Groups in Differential Equations, Springe, Berlin (1986).

    Book  MATH  Google Scholar 

  25. A. Prykarpatsky, D. Blackmore, and N. Bogolubov, “Hamiltonian structure of Benney type hydrodynamic and Boltzmann–Vlasov equations on an axis and applications to manufacturing science,” Open Syst. Inform. Dynam., 6, No. 2, 335–373 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  26. Ya. A. Prykarpatsky, “Finite dimensional local and nonlocal reductions of one type of hydrodynamic systems,” Rept. Math. Phys., 50, 349–360 (2002).

  27. A. K. Prykarpatsky and I. V. Mykytyuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer AP, Dordrecht (1998).

    Book  Google Scholar 

  28. M. C. Pugh and M. J. Shelley, “Singularity formation in thin jets with surface tension,” Comm. Pure Appl. Math., 51, 733 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  29. A. G. Reyman and M. A. Semenov-Tian-Shansky, Integrable Systems [in Russian], R&C-Dynamics, Moscow, Izhevsk (2003).

    Google Scholar 

  30. W. Symes, “Systems of Toda type, inverse-spectral problems, and representation theory,” Invent. Math., 59, 13–51 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Zeidler, Applied Functional Analysis, Springer, Berlin (1995).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 5, pp. 657–664, May, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prykarpats’kyi, A.K. On Completely Integrable Calogero-Type Discretizations of Nonlinear Lax Integrable Dynamical Systems and Related Markov-Type Coadjoint Orbits. Ukr Math J 68, 746–755 (2016). https://doi.org/10.1007/s11253-016-1255-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-016-1255-9

Navigation