Skip to main content
Log in

Influence of water quality and habitat conditions on amphibian community metrics in rivers affected by urban activity

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Anuran amphibians are highly dependent on aquatic ecosystems. Many amphibian species are exhibiting population declines primarily due to habitat destruction and water quality degradation as a result of urban expansion. The objective of this study was to examine combined effects of habitat degradation and water quality on amphibian assemblages in rivers affected by urban impacts. Twelve sites along three rivers were characterized in regard to urbanization and habitat condition using the calculation of a Habitat Model Affinity (HMA) score. Fifteen water quality parameters were assessed at each site. A Simplified Index of Water Quality (SIWQ) and a general Water Quality Index (WQI) were applied. Species richness and relative abundance of amphibians were estimated from visual encounter and calling surveys during summer season between 2009 and 2013. Species richness and abundance were negatively correlated with phosphate, nitrate concentrations and total coliforms, and positively correlated with HMA, electrical conductivity and dissolved oxygen. Species richness was also affected negatively by turbidity. Principal component analysis showed that sites with higher amphibian community metrics were also the ones with lower nutrient levels and better habitat conditions. This study identified important water quality parameters affecting amphibians in rivers with increasing urban impact; and provides information that can be used in the design of strategies to minimize the impacts of urbanization on aquatic biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agüero NS, Moglia MM, Jofré MB (2010) ¿Se relaciona el patrón de abundancia y distribución de anuros con la estructura de las comunidades de plantas en hábitats acuáticos de la ciudad de San Luis (Argentina)? Neotrop Biol Conserv 5(2)

  • Almeida CA, Quintar S, González P, Mallea MA (2007) Influence of urbanization and tourist activities on the water quality of the Potrero de los Funes River (San Luis–Argentina). Environ Monit Assess 133:459–465

    Article  CAS  PubMed  Google Scholar 

  • Almeida C, González SO, Mallea M, González P (2012) A recreational water quality index using chemical, physical and microbiological parameters. Environ Sci Pollut Res 19:3400–3411

    Article  CAS  Google Scholar 

  • American Public Health Association - APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington DC, pp 1220

  • Babini MS, de Lourdes BC, Salinas ZA et al (2018) Reproductive endpoints of Rhinella arenarum (Anura, Bufonidae): populations that persist in agroecosystems and their use for the environmental health assessment. Ecotoxicol Environ Saf 154:294–301

    Article  CAS  PubMed  Google Scholar 

  • Bagur M, Morales S, López-Chicano M (2009) Evaluation of the environmental contamination at an abandoned mining site using multivariate statistical techniques—the Rodalquilar (Southern Spain) mining district. Talanta 80:377–384

    Article  CAS  PubMed  Google Scholar 

  • Baldwin RF, Calhoun AJ, deMaynadier PG (2006) Conservation planning for amphibian species with complex habitat requirements: a case study using movements and habitat selection of the wood frog Rana sylvatica. J Herpetol 40:442–453

    Article  Google Scholar 

  • Barbour MT, Gerritsen J, Snyder BD et al (1999) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. US Environmental Protection Agency, Office of Water Washington, DC

    Google Scholar 

  • Barrett K, Helms BS, Guyer C, Schoonover JE (2010) Linking process to pattern: causes of stream-breeding amphibian decline in urbanized watersheds. Biol Conserv 143:1998–2005

    Article  Google Scholar 

  • Berger L, Roberts AA, Voyles J, Longcore JE, Murray KA, Skerratt LF (2016) History and recent progress on chytridiomycosis in amphibians. Fungal Ecol 19:89–99

    Article  Google Scholar 

  • Bernal MH, Alton LA, Cramp RL, Franklin CE (2011) Does simultaneous UV-B exposure enhance the lethal and sub-lethal effects of aquatic hypoxia on developing anuran embryos and larvae? J Comp Physiol B 181:973–980

    Article  PubMed  Google Scholar 

  • Blaustein AR, Romansic JM, Kiesecker JM (2003) Ultraviolet radiation, toxic chemicals and amphibian population declines. Divers Distrib 9:123–140

    Article  Google Scholar 

  • Boyer R, Grue CE (1995) The need for water quality criteria for frogs. Environ Health Perspect 103:352–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broggi Colman G, Bellagamba J (2006) Calidad de agua de cursos en el Uruguay y análisis de normativa vigente. Congreso Interamericano de Ingeniería Sanitaria y Ambiental, 30. AIDIS, pp. 1-11

  • Calderon MR, González P, Moglia M, Oliva Gonzáles S, Jofré M (2014) Use of multiple indicators to assess the environmental quality of urbanized aquatic surroundings in San Luis, Argentina. Environ Monit Assess 186:4411–4422

    Article  CAS  PubMed  Google Scholar 

  • Calderon M, Moglia M, Nievas R et al (2017) Assessment of the environmental quality of two urbanized lotic systems using multiple indicators. River Res Appl 33:1119–1129

    Article  Google Scholar 

  • Camargo JA, Alonso A, De La Puente M (2004) Multimetric assessment of nutrient enrichment in impounded rivers based on benthic macroinvertebrates. Environ Monit Assess 96:233–249

    Article  CAS  PubMed  Google Scholar 

  • Camargo JA, Alonso A, Salamanca A (2005) Nitrate toxicity to aquatic animals: a review with new data for freshwater invertebrates. Chemosphere 58:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Canals RM, Ferrer V, Iriarte A, Cárcamo S, Emeterio LS, Villanueva E (2011) Emerging conflicts for the environmental use of water in high-valuable rangelands. Can livestock water ponds be managed as artificial wetlands for amphibians? Ecol Eng 37:1443–1452

    Article  Google Scholar 

  • Carey C, Bryant CJ (1995) Possible interrelations among environmental toxicants, amphibian development, and decline of amphibian populations. Environ Health Perspect 103:13

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carr JA (2011) Stress and reproduction in amphibians. Amphibians. Elsevier, Hormones and Reproduction of Vertebrates, pp 99–116

    Google Scholar 

  • Carr JA, Patiño R (2011) The hypothalamus–pituitary–thyroid axis in teleosts and amphibians: endocrine disruption and its consequences to natural populations. Gen Comp Endocrinol 170:299–312

    Article  CAS  PubMed  Google Scholar 

  • Castaneda AJ (2014) The effects of water and habitat quality on amphibian assemblages in agricultural ditches. Doctoral dissertation, Purdue University. Accessed in: https://pdfs.semanticscholar.org/ee88/e5372e1c48bce4f544b1b8161c2925b294a0.pdf. Accessed April 2019

  • Chambers DL (2011) Increased conductivity affects corticosterone levels and prey consumption in larval amphibians. J Herpetol 45:219–223

    Article  Google Scholar 

  • Chen J, Theller L, Gitau MW, Engel BA, Harbor JM (2017) Urbanization impacts on surface runoff of the contiguous United States. J Environ Manag 187:470–481

    Article  Google Scholar 

  • Chica-Olmo M, Carpintero-Salvo I, García-Soldado M et al (2005) Una aproximación geoestadística al análisis espacial de la calidad del agua subterránea. GeoFocus Revista Internacional de Ciencia y Tecnología de la Información Geográfica:79–93

  • Cude CG (2001) Oregon water quality index a tool for evaluating water quality management effectiveness. J Am Water Res Assoc 37:125–137

    Article  CAS  Google Scholar 

  • Cushman SA (2006) Effects of habitat loss and fragmentation on amphibians: a review and prospectus. Biol Conserv 128:231–240

    Article  Google Scholar 

  • Davidson C, Shaffer HB, Jennings MR (2002) Spatial tests of the pesticide drift, habitat destruction, UV-B, and climate-change hypotheses for California amphibian declines. Conserv Biol 16:1588–1601

    Article  Google Scholar 

  • de Solla SR, Bishop CA, Pettit KE, Elliott JE (2002a) Organochlorine pesticides and polychlorinated biphenyls (PCBs) in eggs of red-legged frogs (Rana aurora) and northwestern salamanders (Ambystoma gracile) in an agricultural landscape. Chemosphere 46:1027–1032

    Article  PubMed  Google Scholar 

  • de Solla SR, Pettit KE, Bishop CA, Cheng KM, Elliott JE (2002b) Effects of agricultural runoff on native amphibians in the lower Fraser River Valley, British Columbia, Canada. Environ Toxicol Chem 21:353–360

    Article  Google Scholar 

  • Dodd CK (2010) Amphibian ecology and conservation: a handbook of techniques. Oxford University Press

  • Duellman W, Trueb L (1994) Biology of amphibians –John Hopkins University press. Baltimore, London

    Google Scholar 

  • Earl JE, Whiteman HH (2009) Effects of pulsed nitrate exposure on amphibian development. Environ Toxicol Chem 28:1331–1337

    Article  CAS  PubMed  Google Scholar 

  • Fabricius KE, Cooper TF, Humphrey C, Uthicke S, de’ath G, Davidson J, LeGrand H, Thompson A, Schaffelke B (2012) A bioindicator system for water quality on inshore coral reefs of the great barrier reef. Mar Pollut Bull 65:320–332

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Gonzalez C, Garcia-Vazquez E (2012) Urban ponds, neglected Noah's ark for amphibians. J Herpetol 46:507–514

    Article  Google Scholar 

  • González SO, Almeida C, Calderón M et al (2014) Assessment of the water self-purification capacity on a river affected by organic pollution: application of chemometrics in spatial and temporal variations. Environ Sci Pollut Res 21:10583–10593

    Article  CAS  Google Scholar 

  • Gray MJ, Miller DL, Hoverman JT (2009) Ecology and pathology of amphibian ranaviruses. Dis Aquat Org 87:243–266

    Article  PubMed  Google Scholar 

  • Hamer AJ, McDonnell MJ (2008) Amphibian ecology and conservation in the urbanising world: a review. Biol Conserv 141:2432–2449

    Article  Google Scholar 

  • Hamer AJ, Makings JA, Lane SJ, Mahony MJ (2004) Amphibian decline and fertilizers used on agricultural land in South-Eastern Australia. Agric Ecosyst Environ 102:299–305

    Article  Google Scholar 

  • Hatch AC, Blaustein AR (2000) Combined effects of UV-B, nitrate, and low pH reduce the survival and activity level of larval cascades frogs (Rana cascadae). Arch Environ Contam Toxicol 39:494–499

    Article  CAS  PubMed  Google Scholar 

  • Helena B, Pardo R, Vega M, Barrado E, Fernandez JM, Fernandez L (2000) Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Res 34(3):807–816

    Article  CAS  Google Scholar 

  • Helms BS, Feminella JW, Pan S (2005) Detection of biotic responses to urbanization using fish assemblages from small streams of western Georgia, USA. Urban Ecosystems 8:39–57

    Article  Google Scholar 

  • Henley W, Patterson M, Neves R et al (2000) Effects of sedimentation and turbidity on lotic food webs: a concise review for natural resource managers. Rev Fish Sci 8:125–139

    Article  Google Scholar 

  • Jofré MB, Cid FD, Caviedes-Vidal E (2010) Spatial and temporal patterns of richness and abundance in the anuran assemblage of an artificial water reservoir from the semiarid central region of Argentina. Amphibia-Reptilia 31:533–540

    Article  Google Scholar 

  • Jones B, Snodgrass JW, Ownby DR (2015) Relative toxicity of NaCl and road deicing salt to developing amphibians. Copeia 2015:72–77

    Article  Google Scholar 

  • Karr JR (1991) Biological integrity: a long-neglected aspect of water resource management. Ecol Appl 1:66–84

    Article  PubMed  Google Scholar 

  • Karraker NE (2007) Are embryonic and larval green frogs (Rana clamitans) insensitive to road deicing salt? Biology, Herpetological Conservation and

    Google Scholar 

  • Karraker NE, Gibbs JP, Vonesh JR (2008) Impacts of road deicing salt on the demography of vernal pool-breeding amphibians. Ecol Appl 18:724–734

    Article  PubMed  Google Scholar 

  • Klaver RW, Peterson CR, Patla DA (2013) Influence of water conductivity on amphibian occupancy in the greater Yellowstone ecosystem. Western North American Naturalist 73:184–197

    Article  Google Scholar 

  • Krishnamurthy S, Meenakumari D, Gurushankara H et al (2006) Effects of nitrate on feeding and resting of tadpoles of Nyctibatrachus major (Anura: Ranidae). Aust J Ecotoxicol 12:123–127

    CAS  Google Scholar 

  • Kupferberg SJ, Lind AJ, Thill V, Yarnell SM (2011) Water velocity tolerance in tadpoles of the foothill yellow-legged frog (Rana boylii): swimming performance, growth, and survival. Copeia 2011:141–152

    Article  Google Scholar 

  • Laposata MM, Dunson WA (2000) Effects of spray-irrigated wastewater effluent on temporary pond-breeding amphibians. Ecotoxicol Environ Saf 46:192–201

    Article  CAS  PubMed  Google Scholar 

  • Lescano JN, Nori J, Verga E et al (2015) Anfibios de las Sierras Pampeanas Centrales de Argentina: diversidad y distribución altitudinal. Cuadernos de herpetología 29:103–115

    Google Scholar 

  • Lloyd DS (1987) Turbidity as a water quality standard for salmonid habitats in Alaska. N Am J Fish Manag 7:34–45

    Article  Google Scholar 

  • Marco A, Quilchano C, Blaustein AR (1999) Sensitivity to nitrate and nitrite in pond-breeding amphibians from the Pacific Northwest, USA. Environ Toxicol Chem 18:2836–2839

    Article  CAS  Google Scholar 

  • Marian MP, Sampath K, Nirmala A et al (1980) Behavioural response of Rana cyanophylictis tadpole exposed to changes in dissolved oxygen concentration. Physiol Behav 25:35–38

    Article  CAS  PubMed  Google Scholar 

  • Martel A, Spitzen-van der Sluijs A, Blooi M, Bert W, Ducatelle R, Fisher MC, Woeltjes A, Bosman W, Chiers K, Bossuyt F, Pasmans F (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci 110:15325–15329

    Article  PubMed  Google Scholar 

  • McKibbin R, Dushenko WT, Bishop CA (2008) The influence of water quality on the embryonic survivorship of the Oregon spotted frog (Rana pretiosa) in British Columbia, Canada. Sci Total Environ 395:28–40

  • McKinney ML (2008) Effects of urbanization on species richness: a review of plants and animals. Urban Ecosystems 11:161–176

    Article  Google Scholar 

  • Miller JD, Kim H, Kjeldsen TR, Packman J, Grebby S, Dearden R (2014) Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J Hydrol 515:59–70

    Article  Google Scholar 

  • Mingo Magro J (1981) La vigilancia de la contaminación fluvial. MOPU, Madrid

    Google Scholar 

  • Moore IT, Jessop TS (2003) Stress, reproduction, and adrenocortical modulation in amphibians and reptiles. Horm Behav 43:39–47

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ (1981) Predatory salamanders reverse the outcome of competition among three species of anuran tadpoles. Science 212:1284–1286

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ (1983) Predation, competition, and the composition of larval anuran guilds. Ecol Monogr 53:119–138

    Article  Google Scholar 

  • Noland R, Ultsch GR (1981) The roles of temperature and dissolved oxygen in microhabitat selection by the tadpoles of a frog (Rana pipiens) and a toad (Bufo terrestris). Copeia, 645–652

  • Olson DH, Aanensen DM, Ronnenberg KL, Powell CI, Walker SF, Bielby J, Garner TWJ, Weaver G, The Bd Mapping Group, Fisher MC (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oromí N, Sanuy D, Vilches M (2009) Effects of nitrate and ammonium on larvae of Rana temporaria from the Pyrenees. Bull Environ Contam Toxicol 82:534–537

    Article  CAS  PubMed  Google Scholar 

  • Ortiz ME, Marco A, Saiz N et al (2004) Impact of ammonium nitrate on growth and survival of six European amphibians. Arch Environ Contam Toxicol 47:234–239

    Article  CAS  PubMed  Google Scholar 

  • Ortiz-Santaliestra ME, Marco A, Fernández MJ, Lizana M (2006) Influence of developmental stage on sensitivity to ammonium nitrate of aquatic stages of amphibians. Environ Toxicol Chem 25:105–111

    Article  CAS  PubMed  Google Scholar 

  • Pillsbury FC, Miller JR (2008) Habitat and landscape characteristics underlying anuran community structure along an urban–rural gradient. Ecol Appl 18:1107–1118

    Article  PubMed  Google Scholar 

  • Porej D, Micacchion M, Hetherington TE (2004) Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biol Conserv 120:399–409

    Article  Google Scholar 

  • Pounds JA, Bustamante MR, Coloma LA et al (2006) Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439:161–167

    Article  CAS  PubMed  Google Scholar 

  • Queralt R (1982) La calidad de las aguas en los rios. Tecnologia del agua, 4:49–57

  • Riley SP, Busteed GT, Kats LB et al (2005) Effects of urbanization on the distribution and abundance of amphibians and invasive species in southern California streams. Conserv Biol 19:1894–1907

    Article  Google Scholar 

  • Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta Biomembr 1788:1593–1599

    Article  CAS  Google Scholar 

  • Rouse JD, Bishop CA, Struger J (1999) Nitrogen pollution: an assessment of its threat to amphibian survival. Environ Health Perspect 107:799–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowe DK, Dean TL, Williams E, Smith JP (2003) Effects of turbidity on the ability of juvenile rainbow trout, Oncorhynchus mykiss, to feed on limnetic and benthic prey in laboratory tanks. N Z J Mar Freshw Res 37:45–52

    Article  Google Scholar 

  • Rubbo MJ, Kiesecker JM (2005) Amphibian breeding distribution in an urbanized landscape. Conserv Biol 19:504–511

    Article  Google Scholar 

  • Schmutzer AC, Gray MJ, Burton EC et al (2008) Impacts of cattle on amphibian larvae and the aquatic environment. Freshw Biol 53:2613–2625

    Article  Google Scholar 

  • Semlitsch RD (2000) Principles for management of aquatic-breeding amphibians. J Wildl Manag 64:615–631

    Article  Google Scholar 

  • Seymour RS, Roberts JD, Mitchell NJ, Blaylock AJ (2000) Influence of environmental oxygen on development and hatching of aquatic eggs of the Australian frog, Crinia georgiana. Physiol Biochem Zool 73:501–507

    Article  CAS  PubMed  Google Scholar 

  • Skerratt LF, Berger L, Speare R, Cashins S, McDonald KR, Phillott AD, Hines HB, Kenyon N (2007) Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4:125–134

    Article  Google Scholar 

  • Smith G, Temple K, Vaala D et al (2005) Effects of nitrate on the tadpoles of two Ranids (Rana catesbeiana and R. clamitans). Arch Environ Contam Toxicol 49:559–562

    Article  CAS  PubMed  Google Scholar 

  • Sowers AD, Mills MA, Klaine SJ (2009) The developmental effects of a municipal wastewater effluent on the northern leopard frog, Rana pipiens. Aquat Toxicol 94:145–152

    Article  CAS  PubMed  Google Scholar 

  • Sparling DW (2010) Water-quality criteria for amphibians. Amphibians Ecology and Conservation (CD Kenneth, ed.). Oxford University Press, USA 105–117

  • Stebbins RC, Cohen NW (1997) A natural history of amphibians. Princeton University Press, New Jersey, p 316

    Google Scholar 

  • Suh D (2016) The impact of turbidity on the predator-prey relationship between red swamp crayfish (Procambarus clarkii) and pacific tree frog (Pseudacris regilla) tadpoles

  • Taebi A, Droste RL (2004) Pollution loads in urban runoff and sanitary wastewater. Sci Total Environ 327:175–184

    Article  CAS  PubMed  Google Scholar 

  • Turtle SL (2000) Embryonic survivorship of the spotted salamander (Ambystoma maculatum) in roadside and woodland vernal pools in southeastern New Hampshire. J Herpetol, 60–67

  • Viertel B (1999) Salt tolerance of Rana temporaria: spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia-Reptilia 20:161–171

    Article  Google Scholar 

  • Villegas Ojeda MA, Andrea Espeche B, Jofré MB (2016) Desarrollo larval de anfibios anuros en un río impactado por urbanización: efecto de factores ambientales. Neotropical Biology & Conservation 11

  • Walsh CJ, Roy AH, Feminella JW, Cottingham PD, Groffman PM, Morgan RP II (2005) The urban stream syndrome: current knowledge and the search for a cure. J N Am Benthol Soc 24:706–723

    Article  Google Scholar 

  • Warkentin KM (2002) Hatching timing, oxygen availability, and external gill regression in the tree frog, Agalychnis callidryas. Physiol Biochem Zool 75:155–164

    Article  PubMed  Google Scholar 

  • Wassersug RJ, Seibert EA (1975) Behavioral responses of amphibian larvae to variation in dissolved oxygen. Copeia 86–103

  • Weir L, Mossman M (2005) North American amphibian monitoring program (NAAMP)

  • Welsh HH, Ollivier LM (1998) Stream amphibians as indicators of ecosystem stress: a case study from California’s redwoods. Ecol Appl 8:1118–1132

    Google Scholar 

  • Zhou F, Huang GH, Guo H, Zhang W, Hao Z (2007) Spatio-temporal patterns and source apportionment of coastal water pollution in eastern Hong Kong. Water Res 41:3429–3439

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Wang T, Kuang FH, Luo ZX, Tang JL, Xu TP (2009) Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China. Soil Sci Soc Am J 73:1419–1426

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Instituto de Química de San Luis “Dr. Roberto Olsina”- Consejo Nacional de Investigaciones Científicas y Tecnológicas (INQUISAL-CONICET) and Universidad Nacional de San Luis (Project PROICO 2-1914) for financial support. We thank MSc. Angela Stires for the valuable language and grammar revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirian Roxana Calderon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calderon, M.R., Almeida, C.A., González, P. et al. Influence of water quality and habitat conditions on amphibian community metrics in rivers affected by urban activity. Urban Ecosyst 22, 743–755 (2019). https://doi.org/10.1007/s11252-019-00862-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-019-00862-w

Keywords