Skip to main content

Advertisement

Log in

Modeling above-ground carbon storage: a remote sensing approach to derive individual tree species information in urban settings

  • Published:
Urban Ecosystems Aims and scope Submit manuscript

Abstract

Vegetation has gained importance in respective debates about climate change mitigation and adaptation in cities. Although recently developed remote sensing techniques provide necessary city-wide information, a sufficient and consistent city-wide information of relevant urban ecosystem services, such as carbon emissions offset, does not exist. This study uses city-wide, high-resolution, and remotely sensed data to derive individual tree species information and to estimate the above-ground carbon storage of urban forests in Berlin, Germany. The variance of tree biomass was estimated using allometric equations that contained different levels of detail regarding the tree species found in this study of 700 km2, which had a tree canopy of 213 km2. The average tree density was 65 trees/ha per unit of tree cover and a range from 10 to 40 trees/ha for densely urban land cover. City-wide estimates of the above-ground carbon storage ranged between 6.34 and 7.69 tC/ha per unit of land cover, depending on the level of tree species information used. Equations that did not use individually localized tree species information undervalued the total amount of urban forest carbon storage by up to 15 %. Equations using a generalized estimate of dominant tree species information provided rather precise city-wide carbon estimates. Concerning differences within a densely built area per unit of land cover approaches using individually localized tree species information prevented underestimation of mid-range carbon density areas (10–20 tC/ha), which were actually up to 8.4 % higher, and prevented overestimation of very low carbon density areas (0–5 tC/ha), which were actually up to 11.4 % lower. Park-like areas showed 10 to 30 tC/ha, whereas land cover of very high carbon density (40–80 tC/ha) mostly consisted of mixed peri-urban forest stands. Thus, this approach, which uses widely accessible and remotely sensed data, can help to improve the consistency of forest carbon estimates in cities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari BS, Rawat YS, Singh SP (1995) Structure and function of high altitude forests of central Himalaya I. Dry matter dynamics. Ann Bot 75:237–248. doi:10.1006/anbo.1995.1017

    Article  Google Scholar 

  • Aguaron E, McPherson EG (2012) Comparison of Methods for Estimating Carbon Dioxide Storage by Sacramento’s Urban Forest. In: Lal R, Augustin B (eds) Carbon Sequestration in Urban Ecosystems. Springer, Netherlands, pp. 43–71. doi:10.1007/978-94-007-2366-5_3

    Chapter  Google Scholar 

  • Akbari H, Pomerantz M, Taha H (2001) Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol Energy 70:295–310. doi:10.1016/S0038-092X(00)00089-X

    Article  Google Scholar 

  • Alden, HA (1995) Hardwoods of North America. FPL-GTR-83. Madison, WI

  • Ben-Arie JR, Hay GJ, Powers RP, Castilla G, St-Onge B (2009) Development of a pit filling algorithm for LiDAR canopy height models. Comput Geosci 35:1940–1949. doi:10.1016/j.cageo.2009.02.003

    Article  Google Scholar 

  • Berlin Department of Urban Development (2010a) Natur + Grün [online] Available from: www.stadtentwicklung.berlin.de/umwelt/stadtgruen [accessed: 09–30-2011]

  • Berlin Department of Urban Development (2010b) Straßenbaum-Zustandsbericht Berliner Innenstadt 2010 [online] Available from: www.stadtentwicklung.berlin.de/umwelt/stadtgruen/stadtbaeume/downloads/strb_zustandsbericht2010.pdf [accessed: 09–30-2010]

  • Berlin Department of Urban Development (2014) Gebäude- und Vegetationshöhen (Ausgabe 2014) Available from: www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ki610.htm [accessed: 05–09-2014]

  • Berlin Department of Urban Development and Ministery of Infrastructure and Agriculture Brandenburg (2014) Waldzustandsbericht 2014 der Länder Brandenburg und Berlin Available from: www.stadtentwicklung.berlin.de/forsten/waldzustandsbericht2010/de/download/wzb2010.pdf [accessed: 12–22-2014]

  • Berlin Partner GmbH (2007) Geodatenmanagement in der Berliner Verwaltung – Amtliches 3D Stadtmodell für Berlin [online] Available from: www.businesslocationcenter.de/imperia/md/content/3d/efre_ii_projektdokumentation.pdf. Accessed: 23 Oct 2010

  • Böhm C, Quinkenstein A, Freese D (2011) Yield prediction of young black locust (Robinia pseudoacacia L.) plantations for woody biomass production using allometric relations. Ann For Res 54:215–227

  • Castán Broto V, Bulkeley H (2013) A survey of urban climate change experiments in 100 cities. Glob Environ Chang 23:92–102. doi:10.1016/j.gloenvcha.2012.07.005

    Article  Google Scholar 

  • Chen WY (2015) The role of urban green infrastructure in offsetting carbon emissions in 35 major Chinese cities: a nationwide estimate. Cities 44:112–120. doi:10.1016/j.cities.2015.01.005

    Article  Google Scholar 

  • Churkina G, Brown DG, Keoleian G (2010) Carbon stored in human settlements: the conterminous United States. Glob Chang Biol 16:135–143. doi:10.1111/j.1365-2486.2009.02002.x

    Article  Google Scholar 

  • Crowther TW et al. (2015) Mapping tree density at a global scale. Nature 525:201–205. doi:10.1038/nature14967

    Article  CAS  PubMed  Google Scholar 

  • Dandois JP, Ellis EC (2013) High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens Environ 136:259–276. doi:10.1016/j.rse.2013.04.005

  • Davies ZG, Edmondson JL, Heinemeyer A, Leake JR, Gaston KJ (2011) Mapping an urban ecosystem service: quantifying above-ground carbon storage at a city-wide scale. J Appl Ecol 48:1125–1134. doi:10.1111/j.1365-2664.2011.02021.x

  • Davies ZG, Dallimer M, Edmondson JL, Leake JR, Gaston KJ (2013) Identifying potential sources of variability between vegetation carbon storage estimates for urban areas. Environ Pollut 183:133–142. doi:10.1016/j.envpol.2013.06.005

  • Demuzere M et al. (2014) Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure. J Environ Manag 146:107–115. doi:10.1016/j.jenvman.2014.07.025

  • Fassnacht FE, Hartig F, Latifi H, Berger C, Hernández J, Corvalán P, Koch B (2014) Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens Environ 154:102–114. doi:10.1016/j.rse.2014.07.028

  • Gibbs HK, Brown S, O Niles J, Foley JA (2007) Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environ Res Lett 2:045023

  • Gleason CJ, Im J (2012) Forest biomass estimation from airborne LiDAR data using machine learning approaches. Remote Sens Environ 125:80–91. doi:10.1016/j.rse.2012.07.006

  • Grimmond CSB, King TS, Cropley FD, Nowak DJ, Souch C (2002) Local-scale fluxes of carbon dioxide in urban environments: methodological challenges and results from Chicago. Environ Pollut 116:243–254. doi:10.1016/S0269-7491(01)00256-1

  • Holopainen M et al. (2013) Tree mapping using airborne, terrestrial and mobile laser scanning – A case study in a heterogeneous urban forest. Urban For Urban Green 12:546–553. doi:10.1016/j.ufug.2013.06.002

  • Hutyra LR, Yoon B, Alberti M (2011) Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. Glob Chang Biol 17:783–797. doi:10.1111/j.1365-2486.2010.02238.x

  • Hyypäa J, Kelle O, Lejikonen M, Inkinen M (2001) A Segmentation-Based Method to Retrieve Stem Volume Estimates from 3-D Tree Height Models Produced by Laser Scanners. IEEE Trans Geosci Remote Sens 39:969–975

    Article  Google Scholar 

  • Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29:1339–1366

    Article  Google Scholar 

  • IPCC (2013) Summary for Policymakers. Cambridge University Press, Cambridge

    Google Scholar 

  • Jenkins JC, Chojnacky DC, Heath LS, Birdsey RA (2003) National-Scale Biomass Estimators for United States tree species. For Sci 49:12–35

    Google Scholar 

  • Jo HK, McPherson EG (2001) Indirect carbon reduction by residential vegetation and planting strategies in Chicago, USA. J Environ Manag 61:165–177. doi:10.1006/jema.2000.0393

    Article  CAS  Google Scholar 

  • Johnson AD, Gerhold HD (2003) Carbon storage by urban tree cultivars, in roots and above-ground. Urban For Urban Green 2:65–72. doi:10.1078/1618-8667-00024

    Article  Google Scholar 

  • Jung S-E, Kwak D-A, Park T, Lee W-K, Yoo S (2011) Estimating crown variables of individual trees using airborne and terrestrial laser scanners. Remote Sens 3:2346–2363

    Article  Google Scholar 

  • Kändler G, Adler P, Hellbach A (2011) Wie viel Kohlenstoff speichern Stadtbäume? – Eine Fallstudie am Beispiel der Stadt Karlsruhe FVA-einblick 2/2011 2011:7–10

  • Klein T, Siegwolf RTW, Körner C (2016) Belowground carbon trade among tall trees in a temperate forest. Science 352:342–344. doi:10.1126/science.aad6188

    Article  CAS  PubMed  Google Scholar 

  • Koch B (2010) Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment ISPRS-J Photogramm. Remote Sens 65:581–590. doi:10.1016/j.isprsjprs.2010.09.001

    Google Scholar 

  • Kolbe TH, König G, Nagel C, Stadler A (2008) 3D-Geo-Database Berlin Berlin: Senatsverwaltung für Stadtentwicklung Berlin

  • Kowarik I, von der Lippe M, Cierjacks A (2013) Prevalence of alien versus native species of woody plants in berlin differs between habitats and at different scales. Preslia 85:113–132

    Google Scholar 

  • Kwak D-A, Lee W-K, Lee J-H, Biging G, Gong P (2007) Detection of individual trees and estimation of tree height using LiDAR data. J For Res 12:425–434. doi:10.1007/s10310-007-0041-9

    Article  Google Scholar 

  • Liu C, Li X (2012) Carbon storage and sequestration by urban forests in Shenyang, China. Urban For Urban Green 11:121–128. doi:10.1016/j.ufug.2011.03.002

    Article  Google Scholar 

  • McGaughey, RJ (2013) FUSION/LDV (version 3.x) [Software]. United States Department of Agriculture (USDA) and Pacific Northwest Research Station (UAS)

  • McHale M, Burke I, Lefsky M, Peper P, McPherson E (2009) Urban forest biomass estimates: is it important to use allometric relationships developed specifically for urban trees? Urban. Ecosystems 12:95–113. doi:10.1007/s11252-009-0081-3

    Article  Google Scholar 

  • McPherson EG (1998) Atmospheric carbon dioxide reduction by Sacramento’s urban forest. J Arboric Urban For 24:215–223

    Google Scholar 

  • McPherson EG, Xiao Q, Aguaron E (2013) A new approach to quantify and map carbon stored, sequestered and emissions avoided by urban forests. Landsc Urban Plan 120:70–84. doi:10.1016/j.landurbplan.2013.08.005

    Article  Google Scholar 

  • Muñoz-Vallés S, Cambrollé J, Figueroa-Luque E, Luque T, Niell FX, Figueroa ME (2013) An approach to the evaluation and management of natural carbon sinks: From plant species to urban green systems. Urban For Urban Green 12:450–453. doi:10.1016/j.ufug.2013.06.007

    Article  Google Scholar 

  • Muukkonen P (2007) Generalized allometric volume and biomass equations for some tree species in Europe. Eur J For Res 126:157–166. doi:10.1007/s10342-007-0168-4

    Article  Google Scholar 

  • Nielsen AB, Östberg J, Delshammar T (2014) Review of urban tree inventory methods used to collect data at single-tree level. Arboricult Urban For 40:96–111

    Google Scholar 

  • Nowak DJ, Crane DE (2002) Carbon storage and sequestration by urban trees in the USA. Environ Pollut 116:381–389. doi:10.1016/S0269-7491(01)00214-7

    Article  CAS  PubMed  Google Scholar 

  • Nowak DJ, Stevens JC, Sisinni SM, Luley CJ (2002) Effects of urban tree management and species selection on atmospheric carbon dioxide. J Arboric Urban For 28:113–121

    Google Scholar 

  • Nowak DJ, Crane DE, Stevens JC, Hoehn RE, Walton JT, Bond J (2008) A ground-based method of assessing urban forest structure and ecosystem services Arboricult Urban For 34:347–358

  • Nowak D, Hoehn R, Bodine A, Greenfield E, O’Neil-Dunne J (2013a) Urban forest structure, ecosystem services and change in Syracuse, NY. Urban Ecosystems:1–23. doi:10.1007/s11252-013-0326-z

  • Nowak DJ, Greenfield EJ, Hoehn RE, Lapoint E (2013b) Carbon storage and sequestration by trees in urban and community areas of the United States. Environ Pollut 178:229–236. doi:10.1016/j.envpol.2013.03.019

    Article  CAS  PubMed  Google Scholar 

  • O’Donoghue A, Shackleton CM (2013) Current and potential carbon stocks of trees in urban parking lots in towns of the Eastern Cape, South Africa. Urban For Urban Green 12:443–449. doi:10.1016/j.ufug.2013.07.001

    Article  Google Scholar 

  • Ordóñez C, Duinker PN (2013) An analysis of urban forest management plans in Canada: implications for urban forest management. Landsc Urban Plan 116:36–47. doi:10.1016/j.landurbplan.2013.04.007

    Article  Google Scholar 

  • Pasher J, McGovern M, Khoury M, Duffe J (2014) Assessing carbon storage and sequestration by Canada’s urban forests using high resolution earth observation data. Urban For Urban Green 13:484–494. doi:10.1016/j.ufug.2014.05.001

    Article  Google Scholar 

  • Pickett STA et al. (2011) Urban ecological systems: scientific foundations and a decade of progress. J Environ Manag 92:331–362. doi:10.1016/j.jenvman.2010.08.022

    Article  CAS  Google Scholar 

  • Pillsbury N, Reimer J, Thompson R (1998) Tree Volume Equations for Fifteen Urban Species in California, Technical Report No. 7. Urban Forest Ecosystems Institute, California Polytechnic State University, San Luis Obispo

  • Popescu SC, Wynne RH (2004) Seeing the trees in the forest: using lidar and multispectral data fusion with local filtering and variable window size for estimating tree height. Photogramm Eng Remote Sens 70:589–604

    Article  Google Scholar 

  • Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577

    Article  Google Scholar 

  • Poudyal NC, Siry JP, Bowker JM (2010) Urban forests’ potential to supply marketable carbon emission offsets: a survey of municipal governments in the United States. Forest Policy Econ 12:432–438. doi:10.1016/j.forpol.2010.05.002

    Article  Google Scholar 

  • Poudyal NC, Siry JP, Bowker JM (2011) Quality of urban forest carbon credits. Urban For Urban Green 10:223–230. doi:10.1016/j.ufug.2011.05.005

    Article  Google Scholar 

  • Raciti SM, Hutyra LR, Newell JD (2014) Mapping carbon storage in urban trees with multi-source remote sensing data: relationships between biomass, land use, and demographics in Boston neighborhoods science of the Total Environment 500–501:72–83 doi:10.1016/j.scitotenv.2014.08.070

  • Ren Y et al. (2011) Relationship between vegetation carbon storage and urbanization: a case study of Xiamen, China. For Ecol Manag 261:1214–1223. doi:10.1016/j.foreco.2010.12.038

    Article  Google Scholar 

  • Richardson JJ, Moskal LM (2014) Uncertainty in urban forest canopy assessment: Lessons from Seattle, WA, USA. Urban For Urban Green 13:152–157. doi:10.1016/j.ufug.2013.07.003

    Article  Google Scholar 

  • Schmitt-Harsh M, Mincey SK, Patterson M, Fischer BC, Evans TP (2013) Private residential urban forest structure and carbon storage in a moderate-sized urban area in the Midwest, United States. Urban For Urban Green 12:454–463. doi:10.1016/j.ufug.2013.07.007

    Article  Google Scholar 

  • Schreyer J, Tigges J, Lakes T, Churkina G (2014) Using airborne LiDAR and QuickBird data for modelling urban tree carbon storage and its distribution—a case study of berlin. Remote Sens 6:10636–10655

    Article  Google Scholar 

  • Shrestha R, Wynne RH (2012) Estimating biophysical parameters of individual trees in an urban environment using small footprint discrete-return imaging Lidar. Remote Sens 4:484–508

    Article  Google Scholar 

  • Sileshi GW (2014) A critical review of forest biomass estimation models, common mistakes and corrective measures. For Ecol Manag 329:237–254. doi:10.1016/j.foreco.2014.06.026

    Article  Google Scholar 

  • Singh HS (2013) Tree density and canopy cover in the urban areas in Gujarat, India. Curr Sci 104:1294–1299

    Google Scholar 

  • Stoffberg GH, van Rooyen MW, van der Linde MJ, Groeneveld HT (2010) Carbon sequestration estimates of indigenous street trees in the City of Tshwane, South Africa. Urban For Urban Green 9:9–14. doi:10.1016/j.ufug.2009.09.004

    Article  Google Scholar 

  • Strohbach MW, Haase D (2012) Above-ground carbon storage by urban trees in Leipzig, Germany: analysis of patterns in a European city. Landsc Urban Plan 104:95–104. doi:10.1016/j.landurbplan.2011.10.001

    Article  Google Scholar 

  • Ter-Mikaelian MT, Korzukhin MD (1997) Biomass equations for sixty-five north American tree species. For Ecol Manag 97:1–24. doi:10.1016/s0378-1127(97)00019-4

    Article  Google Scholar 

  • Tigges J, Lakes T, Hostert P (2013) Urban vegetation classification: benefits of multitemporal RapidEye satellite data. Remote Sens Environ 136:66–75. doi:10.1016/j.rse.2013.05.001

    Article  Google Scholar 

  • Wack R, Schardt M, Lohr U, Barrucho L, Oliveira T (2003) Forest inventory for eucalyptus plantations based on airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 34:40–46

    Google Scholar 

  • Weissert LF, Salmond JA, Schwendenmann L (2014) A review of the current progress in quantifying the potential of urban forests to mitigate urban CO2 emissions. Urban Climate 8:100–125. doi:10.1016/j.uclim.2014.01.002

    Article  Google Scholar 

  • Weng Q, Quattrochi DA, Carlson TN (2012) Remote sensing of urban environments: special issue. Remote Sens Environ 117:1–2. doi:10.1016/j.rse.2011.08.005

    Article  Google Scholar 

  • Wilson LA, Davidson R, Coristine H, Hockridge B, Magrath M (2015) Enhancing the Climate Change Benefits of Urban Trees in Cambridge. In: Johnston M, Percival G (eds) Trees, People and the Built Environment II, Institute of Chartered Foresters, Edinburgh, 2014.

  • Yao W, Krzystek P, Heurich M (2012) Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens Environ 123:368–380. doi:10.1016/j.rse.2012.03.027

    Article  Google Scholar 

  • Yu X, Hyyppä J, Vastaranta M, Holopainen M, Viitala R (2011) Predicting individual tree attributes from airborne laser point clouds based on the random forests technique ISPRS-J Photogramm. Remote Sens 66:28–37. doi:10.1016/j.isprsjprs.2010.08.003

    Google Scholar 

  • Zapata-Cuartas M, Sierra CA, Alleman L (2012) Probability distribution of allometric coefficients and Bayesian estimation of aboveground tree biomass. For Ecol Manag 277:173–179. doi:10.1016/j.foreco.2012.04.030

    Article  Google Scholar 

  • Zarco-Tejada PJ, Diaz-Varela R, Angileri V, Loudjani P (2014) Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur J Agron 55:89–99. doi:10.1016/j.eja.2014.01.004

    Article  Google Scholar 

  • Zhang K, Hu B (2012) Individual urban tree species classification using very high spatial resolution airborne multi-spectral imagery using longitudinal profiles. Remote Sens 4:1741–1757

    Article  Google Scholar 

  • Zhang D et al. (2015) Effects of forest type and urbanization on carbon storage of urban forests in Changchun, Northeast China. Chin Geogr Sci 25:147–158. doi:10.1007/s11769-015-0743-4

    Article  Google Scholar 

  • Zhao K, Popescu S, Nelson R (2009) Lidar remote sensing of forest biomass: a scale-invariant estimation approach using airborne lasers. Remote Sens Environ 113:182–196. doi:10.1016/j.rse.2008.09.009

    Article  Google Scholar 

  • Zhao M, Kong Z-h, Escobedo FJ, Gao J (2010) Impacts of urban forests on offsetting carbon emissions from industrial energy use in Hangzhou, China. J Environ Manag 91:807–813. doi:10.1016/j.jenvman.2009.10.010

    Article  CAS  Google Scholar 

  • Zhao F, Guo Q, Kelly M (2012) Allometric equation choice impacts lidar-based forest biomass estimates: a case study from the sierra National Forest, CA. Agric For Meteorol 165:64–72. doi:10.1016/j.agrformet.2012.05.019

    Article  Google Scholar 

  • Zianis D, Muukkonen P, Mäkipää R, Mencuccini M (2005) Biomass and Stem Volume Equations for Tree Species in Europe vol 4. The Finnish Society of Forest Science

Download references

Acknowledgments

This study was supported by the German Research Foundation (DFG) as part of the Research Training Group 780 3 and 4 on “Perspectives on Urban Ecology” (project numbers: 32108303 and 32108304). The authors would like to thank Berlin Partner GmbH and virtualcitySYSTEMS GmbH for providing pre-processed LiDAR data of Berlin. We particularly thank Johannes Schreyer (Geography Department, Humboldt-Universität zu Berlin) for his support and willingness to share data and knowledge. We thank the anonymous reviewers for their very useful input.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tigges.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tigges, J., Churkina, G. & Lakes, T. Modeling above-ground carbon storage: a remote sensing approach to derive individual tree species information in urban settings. Urban Ecosyst 20, 97–111 (2017). https://doi.org/10.1007/s11252-016-0585-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11252-016-0585-6

Keywords

Navigation