Skip to main content
Log in

Defatted silkworm pupae meal as an alternative protein source for cattle

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract  

Silkworm pupae meal (SWP) is a protein-rich by-product of the silk reeling industry, available in a significant quantity. However, there has been little and insignificant research into the use of SWP in ruminants to date. In this view, the present study was conducted in two phases to evaluate the effect of different inclusion levels of defatted silkworm pupae meal (DSWP) on rumen fermentation, microbial protein synthesis and nutrient utilisation in cattle fed on finger millet straw (FMS)-based diet. Four isonitrogenous concentrate mixtures (CM) were prepared with DSWP replacing soybean meal (SBM) protein at 0 (T0), 10 (T1), 20 (T2) and 30% (T3). In phase I, a rumen fermentation experiment was conducted in a 4 × 4 Latin square design using four crossbred steers to study the effect of different levels of DSWP on rumen fermentation. No significant difference (P > 0.05) was observed in rumen fermentation parameters such as pH, ammonia nitrogen (NH3-N) and total volatile fatty acids (VFA) among the experimental groups. In phase II, the digestibility trial was conducted in 20 crossbred cattle (311.2 ± 4.81 kg), which were divided into four experimental groups of five animals each in a completely randomised design to study the effect of different rations (T0, T1, T2, T3) on microbial protein synthesis and nutrient utilisation. The intake and digestibility of nutrients, excretion of urinary purine derivatives and microbial protein synthesis were not significantly different among the experimental groups. In addition, feeding DSWP revealed no significant (P > 0.05) change in the blood biochemical parameters of animals. Furthermore, at the same price as SBM, DSWP provides two units more crude protein. Therefore, the results of the present study indicated that DSWP can be incorporated into the ration of cattle up to 30% by replacing SBM without affecting rumen fermentation pattern and nutrient utilisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The data of this study are included in the article.

Code availability

Not applicable.

References 

  • Ahmed, E., Fukuma, N., Hanada, M., Nishida, T., 2021. Insects as Novel Ruminant Feed and a Potential Mitigation Strategy for Methane Emissions. Animals, 11, 2648.

    Article  PubMed  PubMed Central  Google Scholar 

  • AOAC, 2005. Official Methods of Analysis, 18th revised edition. Association of Official Analytical chemists International, Gaithersburg, MD, USA.

  • Apri, A.D., and Komalasari, K., 2020. Feed and animal nutrition: Insect as animal feed. IOP Conference Series: Earth and Environmental Science, 465, 012002.

  • ARC, 1984. Agricultural research council. The nutrient requirements of ruminant livestock. Supplement no. 1. commonwealth agricultural Bureaux, Farnham Royal, UK, 38–39.

  • Bach, A., Iglesias, I., Devant, M., 2007. Daily rumen pH pattern of loose-housed dairy cattle as affected by feeding pattern and live yeast supplementation. Animal Feed Science and Technology, 136, 146–153.

    Article  CAS  Google Scholar 

  • Benedeti, P.D.B., Paulino, P.V.R., Marcondes, M.I., Valadares Filho, S.C., Martins, T.S., 2014. Soybean meal replaced by slow release urea in finishing diets for beef cattle. Livestock Science, 165, 51–60.

    Article  Google Scholar 

  • Bodas, R., Posado, R., Bartolomé, D.J., De Paz, T., Herráiz, P., Rebollo, E., Garcìa, J.J., 2014. Ruminal pH and temperature, papilla characteristics, and animal performance of fattening calves fed concentrate or maize silage-based diets. Chilean Journal of Agricultural Research, 74, 280– 285.

    Article  Google Scholar 

  • Burtis, C.A., Ashwood, A.R., Bruns, D.E., 2008. Tietz Fundamentals of Clinical Chemistry, 6th edition. Saunders: St Louis, Missouri.

    Google Scholar 

  • Chandrasekharaiah, M., Sampath, K.T., Praveen, U.S., Umalatha., 2003. Chemical composition and in vitro digestibility of certain commonly used feedstuffs in ruminant rations. Indian Journal Dairy Science, 57, 114–117.

    Google Scholar 

  • Chandrasekharaiah, M., Sampath, K.T., Thulasi, A., 2002. Rumen protein degradability of certain feedstuffs in cattle determined by nylon bag technique. Indian Journal Dairy Bioscience, 13, 18–21.

    Google Scholar 

  • Chandrasekharaiah, M., Thulasi, A., Sampath, K.T., 2012. Effect of different rumen degradable nitrogen levels on microbial protein synthesis and digestibility in sheep fed on finger millet straw (Eleusine coracana) based diet. Small ruminant research, 102, 151–156.

    Article  Google Scholar 

  • Chandrasekharaiah, M., Thulasi, A., Suresh, K.P, Sampath K.T., 2011. Rumen degradable nitrogen requirements for optimum microbial protein synthesis and nutrient utilization in sheep-fed on finger millet straw (Eleusine coracana)-based diet. Animal Feed Science Technology, 163, 130–135.

    Article  CAS  Google Scholar 

  • Chen, X. B., and Gomes M. J., 1992. Estimation of microbial protein supply to sheep and cattle based on urinary excretion of purine derivatives–an overview of the technical details. Rowett Research Institute, University of Aberdeen, UK.

  • Chen, X. B., Jayasuriya, M. C. N., Makkar, H. P. S., 2014. Measurement and application of purine derivatives: creatinine ratio in spot urine samples of ruminants. In: Makkar, H.P.S., Chen, X.B. (eds) Estimation of microbial protein supply in ruminants using urinary purine derivatives. Springer, Dordrecht. The Netherlands, 167–179.

  • Coroian, Aurelia & Răducu, Camelia & Andronie, Luisa & Marchis, Zamfir & Terhes, Sorin & Muntean, Mircea., 2017. Biochemical and Haematological Blood Parameters at Different Stages of Lactation in Cows. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Animal Science and Biotechnologies, 74. 31. https://doi.org/10.15835/buasvmcn asb: 12283.

  • Cutrignelli, M.I., Piccolo, G., D’Urso, S., Calabrò, S., Bovera, F., Tudisco, R., Infascelli, F., 2007. Urinary excretion of purine derivatives in dry buffalo and Friesian cows. Italy Journal Animal Science, 6, 563–566.

    Article  Google Scholar 

  • Dalle Zotte, A., Singh, Y., Squartini, A., Stevanato, P., Cappellozza, S., Kovitvadhi, A., Subaneg, S., Bertelli, D., Cullere, M., 2021. Effect of a dietary inclusion of full-fat or defatted silkworm pupa meal on the nutrient digestibility and faecal microbiome of fattening quails. Animal, 15, 100112.

    Article  CAS  PubMed  Google Scholar 

  • Dórea, J.R.R., Danés M.A.C., Zanton G.I., Armentano L.E., 2017. Urinary purine derivatives as a tool to estimate dry matter intake in cattle: A meta-analysis. Journal of Dairy Science, 100, 8977–8994.

    Article  PubMed  Google Scholar 

  • FAO, 2009. How to feed the world in 2050. Food and agriculture organization. Accessed on Feb. 1, 2022. www.fao.org/3/a-ak542e/ak542e13.pdf

  • Filipek, J., Dvorak, R., 2009. Determination of volatile fatty acid content in the rumen liquid: Comparison of gas chromatography and capillary isotachophoresis. Acta Veterinaria Brno, 78, 627–633.

    Article  CAS  Google Scholar 

  • Finke, M.D., 2002. Complete nutrient composition of commercially raised invertebrates used as food for insectivores. Zoo Biology, 21, 269–285.

    Article  CAS  Google Scholar 

  • Groot, J.C.J., Von Keulen, H., Oosting, S.J., 2010. Exploration and design of alternative feeding systems for livestock in the tropics by integrative system approaches. Advances in Animal Bioscience, 1, 441–442.

    Article  Google Scholar 

  • Gugołek, A., Kowalska, D., Strychalski, J., Ognik, K., Juśkiewicz J., 2021. The effect of dietary supplementation with silkworm pupae meal on gastrointestinal function, nitrogen retention and blood biochemical parameters in rabbits. BMC Veterinary Research, 17, 204–218.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guyader, J., Eugene, M., Meunier, B., Doreau M., Morgavi, D. P., Silberberg, M., Rochette, Y., Gerard, C., Loncke, C., Martin C, 2015. Additive methane-mitigating effect between linseed oil and nitrate fed to cattle. Journal of Animal Science, 93, 3564–3577.

    Article  CAS  PubMed  Google Scholar 

  • Hackmann, T.J., Firkins, J.L., 2015. Maximizing efficiency of rumen microbial protein production. Frontiers in microbiology, 6, 465.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heuzé, V., Tran, G., Giger-Reverdin, S., Lebas, F., 2017. Silkworm pupae meal. Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/199 last updated on september 14, 2017, 10:43.

  • Hristov, A.N., Bannink, A., Crompton, L.A., Huhtanen, P., Kreuzer, M., McGee, M., Nozière, P., Reynolds, C.K., Bayat, A.R., Yáñez-Ruiz, D.R., Dijkstra, J., Kebreab, E., Schwarm, A., Shingfield, K.J., Yu, Z., 2019. Invited review: Nitrogen in ruminant nutrition: A review of measurement techniques. Journal of Dairy Science, 102, 5811–5852.

    Article  CAS  PubMed  Google Scholar 

  • IAEA, 1997. Estimation of rumen microbial protein production from purine derivatives in urine. IAEA-TECDOC-945. International Atomic Energy Agency, Vienna, Austria.

  • ICAR, 2013a. Nutrient requirements of cattle and buffalo. Indian council of agricultural research, Krishi Bhawan, New Delhi, India.

  • ICAR, 2013b. Nutrient Composition of Indian Feeds and Fodder. Indian Council of Agricultural Research, Krishi Bhawan, New Delhi, India.

  • Ichim, M., Tanase, D., Tzenov, P., Grekov. D., 2008. Global trends in mulberry and silkworm use for non – textile purposes, First Balkan workshop ―Possibilities for Using Silkworm and Mulberry for Non-Textile Purposes. 23 – 26 September 2008, Plovdiv, Bulgaria. Accessed on 26 Feb 2022. https://www.feedipedia.org/node/25126

  • Ingvartsen, K.L., 2006. Feeding- and management-related diseases in the transition cow – Physiological adaptations around calving and strategies to reduce feeding-related diseases. Animal Feed Science and Technology, 126, 175–213.

    Article  Google Scholar 

  • Ioselevich, M., Steingaß, H., Rajamurodov, Z., Drochner, W., 2004. Nutritive value of silkworm pupae for ruminants. VDLUFA Kongress, Qualitätssicherung in landwirtschaftlichen Produktions systemen, Rostock, 2004/09/13–17, 116, 108.

  • Jardstedt, M., Hessle, A., Nørgaard, P., Richardt, W., Nadeau, E., 2017. Feed intake and urinary excretion of nitrogen and purine derivatives in pregnant suckler cows fed alternative roughage-based diets. Livestock Science, 202, 82–88.

    Article  Google Scholar 

  • Kaneko, J.J., Harvey, J.W. and Bruss, M.L. eds., 2008. Clinical biochemistry of domestic animals. Academic press.

  • Karnjanapratum, S., Kaewthong, P., Indriani, S., Petsong, K., Takeungwongtrakul, S., 2022. Characteristics and nutritional value of silkworm (Bombyx mori) pupae-fortified chicken bread spread. Scientific Report, 12, 1492.

    Article  CAS  Google Scholar 

  • Karthick R. P., Aanand S., Stephen S. J., Padmavathy P., 2019. Silkworm pupae meal as alternative source of protein in fish feed. Journal of Entomology and Zoology Studies, 7, 78–85.

    Google Scholar 

  • Khan, S.A., Zubairy, A.W., 1971. Chemical composition and nutritive value of Tusser silk worm pupae. Indian Journal Animal Science, 41, 1070–1072.

    CAS  Google Scholar 

  • Kiran, R.R., Kumar, S., 2013. Influence of yeast culture supplementation on rumen fermentation of bulls fed complete rations. International Journal of Agricultural Science and Veterinary Medicine, 1, 8–15.

    Google Scholar 

  • Lee, C., Morris, D.L, Dieter, P.A., 2019. Validating and optimizing spot sampling of urine to estimate urine output with creatinine as a marker in dairy cows. Journal of Dairy Science, 102, 236–245.

    Article  CAS  PubMed  Google Scholar 

  • Lins, S.E.B., Pessoa, R.A.S., Ferreira, M.A., Campos, J.M.S., Silva, J.A.B.A., Silva, J.L., Santos, S.A., Melo, T.T.B., 2016. Spineless cactus as a replacement for wheat bran in sugar cane-based diets for sheep: Intake, digestibility, and ruminal parameters. Revista Brasileira de Zootecnia, 45, 26–31.

    Article  Google Scholar 

  • Longvah, T., Mangthya, K., Ramulu, P., 2011. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chemistry, 128, 400–403.

    Article  CAS  PubMed  Google Scholar 

  • Lopes, A., De Oliveira, J., Santos, E., Medeiros, A., Givisiez, P., Lemos, M., Oliveira, C., 2020. Goats fed with non-protein nitrogen: Ruminal bacterial community and ruminal fermentation, intake, digestibility and nitrogen balance. The Journal of Agricultural Science, 158, 781–790.

    Article  CAS  Google Scholar 

  • Loya-Olguin, J. L., Vega-Granados, E., Gómez-Gurrola, A., Navarrete-Méndez, R., Calvo-Carrillo, C., García-Galicia, I. A., Valdés-García, Y. S., Sanginés-García, L., 2020. Rumen fermentation and diet degradability in sheep fed sugarcane (Saccharum officinarum) silage supplemented with Tithonia diversifolia or alfalfa (Medicago sativa) and rice polishing. Australian Journal of Veterinary Sciences, 52, 55–61.

    Article  Google Scholar 

  • Maekawa, M., Beauchemin, K., Christensen, D., 2002. Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. Journal of Dairy Science, 85, 1165–1175.

    Article  CAS  PubMed  Google Scholar 

  • Mahesh, M., Thakur, S.S., 2018. Rice gluten meal, an agro-industrial by-product, supports performance attributes in lactating Murrah buffaloes (Bubalus bubalis). Journal of Cleaner Production, 177, 655–664.

    Article  CAS  Google Scholar 

  • Makkar, H.P.S., 2018. Review: Feed demand landscape and implications of food- not feed strategy for food security and climate change. Animal, 12, 1744–1754.

    Article  CAS  PubMed  Google Scholar 

  • Makkar, H.P.S., Tran, G., Heuzé, V., Ankers, P., 2014. State-of-the-art on use of insects as feed. Animal Feed Science Technology, 197, 1–33.

    Article  CAS  Google Scholar 

  • Matin, N., Utterback, P., Parsons, C.M., 2021. True metabolizable energy and amino acid digestibility in black soldier fly larvae meals, cricket meal, and mealworms using a precision-fed rooster assay. Poultry Science, 100, 101146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Animal Research and Development, 28, 7–55

  • Metate, R.D., Levinson, S.A., 1954. Clinical and Laboratory Diagnosis by Levinson. American. Journal of Clinical Pathology. 24, 511–525.

    Google Scholar 

  • Narang, M.P., Lal, R., 1985. Evaluation of some agro-industrial wastes in the feed of jersery calves. Agricultural Wastes, 13, 15–21.

    Article  Google Scholar 

  • NRC, 2001. Nutrient Requirements of Dairy Cattle. 7th revised edition, National Academy Press, Washington, DC, USA. Accessed on 26 Feb 2022. https://nap.nationalacademies.org/catalog/9825/nutrient-requirements-of-dairy-cattle-seventh-revised-edition-2001

  • Ojeda, A., de Parra, O., Balcells, J., Belenguer, A., 2005. Urinary excretion of purine derivatives in Bos indicus x Bos taurus crossbred cattle. The British Journal of Nutrition, 93, 821–828.

    Article  CAS  PubMed  Google Scholar 

  • Orskov, E.R., Ryle, M., 1990. Energy Nutrition in Ruminants. Elsevier Applied Science; London and New York, UK and USA. Accessed on 26 Feb 2022. https://www.vgls.vic.gov.au/client/en_AU/VGLS-public/search/detailnonmodal/ent:$002f$002fSD_ILS$002f0$002fSD_ILS:85422/ada?qu=Ruminants.&d=ent%3A%2F%2FSD_ILS%2F0%2FSD_ILS%3A85422%7EILS%7E41&ps=300&h=8

  • Palmonari, A., Stevenson, D.M., Mertens, D.R., Cruywagen, C.W., Weimer, P.J., 2010. pH dynamics and bacterial community composition in the rumen of lactating dairy cows. Journal of Dairy Science, 93, 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Park, G., Oh, H., Ahn, S., 2009. Improvement of the ammonia analysis by the phenate method in water and waste water. Bulletin of the Korean Chemical Society, 30, 2032–2038

    Article  CAS  Google Scholar 

  • Pathak, A.K., 2008. Various factors affecting microbial protein synthesis in the rumen. Veterinary World, 1, 186–189.

    Google Scholar 

  • Radostits, O.M., Gay, C.C., Hinchcliff, K.W., Constable, P.D., 2007. Veterinary Medicine: a Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats. 10th ed. Elsevier, Philadelphia, PA.

    Google Scholar 

  • Rao, P.U., 1994. Chemical composition and nutritional evaluation of spent silk worm pupae. Journal of Agricultural Food Chemistry, 42, 2201–2203.

    Article  CAS  Google Scholar 

  • Rashmi, K.M., Chandrasekharaiah, M., Soren N.M., Prasad K.S., David C.G., 2018. Effect of dietary incorporation of silkworm pupae meal on in vitro rumen fermentation and digestibility. Indian Journal of Animal Sciences, 88, 731–735.

    CAS  Google Scholar 

  • Reitman, S., Frankel, S., 1957. A colorimetric method for determination of serum glutamate oxaloacetate and glutamic pyruvate transaminase. American Journal of Clinical Pathology, 28, 56–63.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, P.R.K., Kumar, D.S., Rao, E.R., Seshiah, Ch.V., Sateesh, K., Rao, K.A., Reddy, Y.P.K., Hyder, I., 2019. Environmental sustainability assessment of tropical dairy buffalo farming vis-a-vis sustainable feed replacement strategy. Scientific Reports, 9, 16745.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, T.P., Wint, G.R.W., Conchedda, G., Van Boeckel, T., Mcleod, M., Bett, B., Grace, D., Gilbert, M., 2015. The global livestock sector: Trends, drivers, and implications for society, health and the environment. Science with Impact annual conference 2015—BSAS/AVTRW/WPSA. University of Chester, Chester, United Kingdom, 6.

  • Sampath, K.T., Chandrasekharaiah, M., Anandan, S., Thulasi, A., 1999. Bypass protein for ruminants, technical bulletin No.2, National Institute of Animal Nutrition and Physiology, Bangalore, India. pp 1–19.

  • Sampath, K.T., Chandrasekharaiah, M., Thulasi, A., 2003. Limiting amino acids in the bypass protein fraction of some commonly used feedstuffs. Indian Journal of Animal Science, 73, 1155–1158.

    CAS  Google Scholar 

  • Shah, A.A., Wanapat, M., 2021. Gryllus testaceus walker (crickets) farming management, chemical composition, nutritive profile, and their effect on animal digestibility. Entomological Research, 51, 639–649.

    Article  CAS  Google Scholar 

  • Sheikh , I.U., Banday M.T., Baba, I.A., Adil, S., Zaffer, B, Bulbul, K.H., 2018. Utilization of silkworm pupae meal as an alternative source of protein in the diet of livestock and poultry: a review. Journal of Entomology and zoology studies, 6, 1010–1016.

    Google Scholar 

  • Silva, A.L., Marcondes, M.I., Campos, M.M., Machado, F.S., Castro, M.M.D. and Trece, A.S., 2013. Prediction of dry matter intake in dairy calves. In Energy and protein metabolism and nutrition in sustainable animal production. Wageningen Academic Publishers, Wageningen, 341–342.

    Chapter  Google Scholar 

  • Singh, D.N, Bohra, J.S., Tyagi, V., Singh, T., Banjara, T.R., Gupta, G., 2022. A review of India’s fodder production status and opportunities. Grass and Forage Science, 77, 1–10.

    Article  Google Scholar 

  • SPSS. Statistical package for social sciences, Statistics for windows, version 17. Released 2008. Chicago, USA.

  • Suresh, H. N., Mahalingam, C. A., Pallavi, 2012. Amount of chitin, chitosan and chitosan based on chitin weight in pure races of multivoltine and bivoltine silkworm pupae Bombyx mori L. International Journal of Science and Nature, 3, 214–216.

    CAS  Google Scholar 

  • Thirumalaisamy, G., Malik, P. K., Kolte, A. P., Trivedi, S., Dhali, A., and Bhatta, R., 2022. Effect of long-term supplementation with silkworm pupae oil on the methane yield, ruminal protozoa, and archaea community in sheep. Frontiers in Microbiology, 13, 780073.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thirumalaisamy, G., Malik, P. K., Kolte, A. P., Trivedi, S., Dhali, A., and Bhatta, R., 2020. Effect of silkworm (Bombyx mori) pupae oil supplementation on enteric methane emission and methanogens diversity in sheep. Animal Biotechnology, 33, 128–140.

    Article  PubMed  Google Scholar 

  • Toral, P.G., Hervás, G., González-Rosales, M. G., Mendoza, A. G., Robles-Jiménez, L. E., and Frutos, P., 2022. Insects as alternative feed for ruminants: comparison of protein evaluation methods. Journal of animal science and biotechnology, 13, 21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trivedy, K., Kumar, S. N., Mondal, M. and Kumar Bhat, C. A., 2008. Protein banding pattern and major amino acid component in de-oiled pupal powder of silkworm, Bombyx mori Linn. Journal of Entomology, 5, 10–16.

    Article  CAS  Google Scholar 

  • Ungerfeld, E.M., 2020. Metabolic Hydrogen Flows in Rumen Fermentation: Principles and Possibilities of Interventions. Frontiers of Microbiology, 11, 589.

    Article  Google Scholar 

  • Van Soest, P.J., Robertson, J.B., Lewis, B.A., 1991. Methods of dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74, 3583–3597

    Article  PubMed  Google Scholar 

  • Wanapat, M., Pimpa, O., 1999. Effect of ruminal NH3-N levels on ruminal fermentation, purine derivatives, digestibility and rice straw intake in swamp buffaloes. Asian- Australasian Journal of Animal Science, 12, 904–907.

    Article  Google Scholar 

  • Wang, L., Zhang, G., Li, Y., Zhang, Y., 2020. Effects of high forage/concentrate diet on volatile fatty acid production and the microorganisms involved in VFA production in cow rumen. Animals, 10, 223.

    Article  PubMed Central  Google Scholar 

  • Wei, Z. J., Liao A.M., Zhang, H.X., Liu. J., Jiang, S.T. 2009. Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology. Bioresource Technology, 100, 4214–4219.

    Article  CAS  PubMed  Google Scholar 

  • Wootton, I.D.P., 1964. Micro- analysis in Medical Biochemistry, 4th edition, J. and A. Churchill Limited, London, 174 – 175.

    Google Scholar 

  • Zlatkis, A., Zak, B., Boyle, H. J., Mich, D., 1953. A new method for direct determination of serum cholesterol. Journal of Laboratory Clinical Medicine, 41, 486–492.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thanks the director of CSRTI, Mysore, for providing the financial support and the principal investigator for conducting this research work under ICAR-NIANP, a CSRTI collaborative project. The authors sincerely acknowledge the director of ICAR-NIANP and the director of ICAR-NDRI for providing the necessary research amenities for this study. The authors are extremely grateful to ICAR-NDRI for providing good education facilities and institutional scholarship throughout the M. V. Sc.

Author information

Authors and Affiliations

Authors

Contributions

KMR conducted the experiment, analysed data and wrote the manuscript. MC conceived and designed research and was responsible for supervision and project administration. NMS was responsible for supervision and data analysis. NMS, KSP and CGD contributed reagents and analytical tools. YT and VS provided test sample.

Corresponding authors

Correspondence to K. M. Rashmi or M. Chandrasekharaiah.

Ethics declarations

Ethics approval

The present experiment was carried out strictly according to the norms of the Institutional Animal Ethical Committee (IAEC) of ICAR-National Institute of Animal Nutrition and Physiology (ICAR-NIANP), Adugodi, Bengaluru.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashmi, K.M., Chandrasekharaiah, M., Soren, N.M. et al. Defatted silkworm pupae meal as an alternative protein source for cattle. Trop Anim Health Prod 54, 327 (2022). https://doi.org/10.1007/s11250-022-03323-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-022-03323-3

Keywords

Navigation