Skip to main content
Log in

Impairment of caprine oocyte maturation in vitro and alteration of granulosa cells functions by widely used fungicide mancozeb

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

Mancozeb is classified as an endocrine disruptor; thus the present study was carried out to investigate the impact of mancozeb on mammalian ovarian functions using in vitro caprine oocyte maturation and granulosa cell culture models. Caprine cumulus oocyte complexes (COCs) and granulosa cells were cultured under standard culture conditions and treated with mancozeb concentrations of 0.3, 3, and 30 μg/ml along with a control for 24 h and assessed. Granulosa cell viability and progesterone concentration in spent culture media after treatments were also assessed. Mancozeb significantly decreased (P < 0.05) the oocytes cumulus expansion and the maturation of caprine oocytes. Marked changes in granulose cell morphology were observed with 30 μg/ml mancozeb and significantly reduced (P < 0.05) cell viability. Interestingly, the same concentrations significantly increased (P < 0.05) the progesterone secretion by the cells. Significant reduction of granulosa cells viability and reduction of cumulus expansion and suppression of metaphase plate formation in oocyte can impair the fertilization ability and developmental potential of the oocytes. High progesterone concentration due to mancozeb treatment may suppress LH surge and suppress ovulation. In conclusion, mancozeb suppresses granulosa cells viability, reduces cumulus expansion, and suppresses metaphase plate formation but induces progesterone secretion from granulosa cells that may inhibit LH surge for ovulation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

The data and other material are not publically available since the project work is still ongoing but can be obtained from the corresponding authors with a reasonable request.

Code availability

Not applicable.

References

  • Acuña-Hernández, D. G., Arreola-Mendoza, L., Santacruz-Márquez, R., García-Zepeda, S. P., Parra-Forero, L. Y., Olivares-Reyes, J. A. and Hernández-Ochoa, I. 2018. Bisphenol A alters oocyte maturation by prematurely closing gap junctions in the cumulus cell-oocyte complex. Toxicology and Applied Pharmacology, 344, 13–22.

    Article  Google Scholar 

  • Akthar, I., Wang, Z., Wijayagunawardane, M. P. B., Ratnayake, C. J., Siriweera, E. H., Lee, K. F. and Kodithuwakku, S. P. 2020. In vitro and in vivo impairment of embryo implantation by commonly used fungicide Mancozeb. Biochemical and Biophysical Research Communications, 527(1), 42–48.

    Article  CAS  Google Scholar 

  • Atuhaire, A., Kaye, E., Mutambuze, I. L., Matthews, G., Friedrich, T. and Jørs, E. 2017. Assessment of Dithiocarbamate Residues on Tomatoes Conventionally Grown in Uganda and the Effect of Simple Washing to Reduce Exposure Risk to Consumers. Environmental Health Insights, 11, 1–8.

    Article  Google Scholar 

  • Belfiore, C.J., Hawkins, D. E., Wiltbank M.C. and Niswender, G. D. 1994. Regulation of cytochrome P450scc synthesis and activity in the ovine corpus luteum. The Journal of Steroid Biochemistry and Molecular Biology, 51(5-6), 283-90

    Article  CAS  Google Scholar 

  • Bindali, B. B. and Kaliwal, B. B. 2002. Anti-implantation effect of a carbamate fungicide mancozeb in albino mice. Industrial Health, 40(2), 191–197.

    Article  CAS  Google Scholar 

  • Bliatka, D., Lymperi, S., Mastorakos, G. and Goulis, D. G. 2017. Effect of endocrine disruptors on male reproduction in humans: why the evidence is still lacking? Andrology, 5(3), 404–407.

    Article  CAS  Google Scholar 

  • Boscos, C. M., Samartzi, F. C., Lymberopoulos, A. G., Stefanakis, A. and Belibasaki, S. 2003. Assessment of progesterone concentration using enzymeimmunoassay, for early pregnancy diagnosis in sheep and goats. Reproduction in Domestic Animals, 38(3), 170–174.

    Article  CAS  Google Scholar 

  • Černohlávková, J., Jarkovský, J. and Hofman, J. 2009. Effects of fungicides mancozeb and dinocap on carbon and nitrogen mineralization in soils. Ecotoxicology and Environmental Safety, 72(1), 80–85.

    Article  Google Scholar 

  • Colosio, C., Fustinoni, S., Corsini, E., Bosetti, C., Birindelli, S., Boers, D., Campo, L., La Vecchia, C., Liesivuori, J., Pennanen, S., Vergieva, T., Van Amelsvoort, L. G. P. M., Steerenberg, P., Swaen, G. M. H., Zaikov, C. and Van Lveren, H. 2007. Changes in serum markers indicative of health effects in vineyard workers following exposure to the fungicide mancozeb: An Italian study. Biomarkers, 12(6), 574–588.

    Article  CAS  Google Scholar 

  • Coyral-Castel, S., Ramé, C., Fatet, A. and Dupont, J. 2010. Effects of unsaturated fatty acids on progesterone secretion and selected protein kinases in goat granulosa cells. Domestic Animal Endocrinology, 38(4), 272–283.

    Article  CAS  Google Scholar 

  • De Coster, S. and Van Larebeke, N. 2012. Endocrine-disrupting chemicals: Associated disorders and mechanisms of action. Journal of Environmental and Public Health, 2012, 713696.

  • Gore, A.C., Chappell, V.A., Fenton, S.E., Flaws, J.A., Nadal, A., Prins, G.S., Toppari, J. and Zoeller, R.T. 2015. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine Review, 36(6), 1-150.

    Article  Google Scholar 

  • Herrick, J. R., Behboodi, E., Memili, E., Blash, S., Echelard, Y. and Krisher, R. L. 2004. Effect of macromolecule supplementation during in vitro maturation of goat oocytes on developmental potential. Molecular Reproduction and Development, 69(3), 338–346.

    Article  CAS  Google Scholar 

  • Hu, H., Jia, Q., Zhou, B., Zhang, J., Li, Z., and Liu, Z. 2020. Comparative analysis of the ovarian transcriptome reveals novel insights into fertility differences in Large White sows. Genes and Genomics, 42(7), 715–725.

    Article  CAS  Google Scholar 

  • Iorio, R., Castellucci, A., Rossi, G., Cinque, B., Cifone, M. G., Macchiarelli, G. and Cecconi, S. 2015. Mancozeb affects mitochondrial activity, redox status and ATP production in mouse granulosa cells. Toxicology in Vitro, 30(1), 438–445.

    Article  CAS  Google Scholar 

  • Kawate, N., Yamada, H., Suga, T., Inaba, T. and Mori, J. 1997. Induction of Luteinizing Hormone Surge by Pulsatile Administration of Gonadotropin-Releasing Hormone Analogue in Cows with Follicular Cysts. Journal of Veterinary Medical Science, 59(6), 463–466.

    Article  CAS  Google Scholar 

  • Kjeldsen, L. S., Ghisari, M. and Bonefeld-Jørgensen, E. C. 2013. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity. Toxicology and Applied Pharmacology, 272(2), 453–464.

    Article  CAS  Google Scholar 

  • Liu, Y., Wu, X., Xie, J., Wang, W., Xin, J., Kong, F., Wu, Q., Ling, Y., Cao, X., Li, Q., Zhang, S., Ding, L., Wang, X., Wu, F., Zhang, D., Wang, R., Cui, W., Zhang, X., and Li, W. 2020. Identification of transcriptome differences in goat ovaries at the follicular phase and the luteal phase using an RNA-Seq method. Theriogenology, 158, 239–249.

    Article  CAS  Google Scholar 

  • Mlynarčíková, A., Nagyová, E., Ficková, M. and Scsuková, S. 2009. Effects of selected endocrine disruptors on meiotic maturation, cumulus expansion, synthesis of hyaluronan and progesterone by porcine oocyte-cumulus complexes. Toxicology in Vitro, 23(3), 371–377.

    Article  Google Scholar 

  • Palmerini, M. G., Belli, M., Nottola, S. A., Miglietta, S., Bianchi, S., Bernardi, S., Antonouli, S., Cecconi, S., Familiari, G.and Macchiarelli, G. 2018. Mancozeb impairs the ultrastructure of mouse granulosa cells in a dose-dependent manner. Journal of Reproduction and Development, 64(1), 75–82.

    Article  CAS  Google Scholar 

  • Paro, R., Tiboni, G. M., Buccione, R., Rossi, G., Cellini, V., Canipari, R. and Cecconi, S. 2012. The fungicide mancozeb induces toxic effects on mammalian granulosa cells. Toxicology and Applied Pharmacology, 260(2), 155–161.

    Article  CAS  Google Scholar 

  • Peralta, O. A., Bucher, D., Fernandez, A., Berland, M., Strobel, P., Ramirez, A., Ratto, M. H. and Concha, I. (2013). Granulocyte-macrophage colony stimulating factor (GM-CSF) enhances cumulus cell expansion in bovine oocytes. Reproductive Biology and Endocrinology, 11, 55.

    Article  CAS  Google Scholar 

  • Petrakis, D., Vassilopoulou, L., Mamoulakis, C., Psycharakis, C., Anifantaki, A., Sifakis, S., Docea, A. O., Tsiaoussis, J., Makrigiannakis, A. and Tsatsakis, A. M. 2017. Endocrine disruptors leading to obesity and related diseases. International Journal of Environmental Research and Public Health, 14(10), 1–18.

    Article  Google Scholar 

  • Qiu, M., Liu, J., Han, C., Wu, B., Yang, Z., Su, F., Quan, F. and Zhang, Y. 2014. The influence of ovarian stromal/theca cells during in vitro culture on steroidogenesis, proliferation and apoptosis of granulosa cells derived from the goat ovary. Reproduction in Domestic Animals, 49(1), 170–176.

    Article  CAS  Google Scholar 

  • Quan, G. B., Wu, G. Q., Wang, Y. J., Ma, Y., Lv, C. R. and Hong, Q. H. 2016. Meiotic maturation and developmental capability of ovine oocytes at germinal vesicle stage following vitrification using different cryodevices. Cryobiology, 72(1), 33–40.

    Article  CAS  Google Scholar 

  • Rossi, G., Buccione, R., Baldassarre, M., MacChiarelli, G., Palmerini, M. G., and Cecconi, S. 2006a. Mancozeb exposure in vivo impairs mouse oocyte fertilizability. Reproductive Toxicology, 21(2), 216–219.

    Article  CAS  Google Scholar 

  • Rossi, G., Palmerini, M. G., Macchiarelli, G., Buccione, R., and Cecconi, S. 2006b. Mancozeb adversely affects meiotic spindle organization and fertilization in mouse oocytes. Reproductive Toxicology, 22(1), 51–55.

    Article  CAS  Google Scholar 

  • Runkle, J., Flocks, J., Economos, J. and Dunlop, A. L. 2017. A systematic review of Mancozeb as a reproductive and developmental hazard. Environment International, 99, 29–42.

    Article  CAS  Google Scholar 

  • Shafei, A. E. S., Nabih, E. S., Shehata, K. A., Abd Elfatah, E. S. M., Sanad, A. B. A., Marey, M. Y., Hammouda, A. A. M. A., Mohammed, M. M. M., Mostafa, R. and Ali, M. A. 2018. Prenatal Exposure to Endocrine Disruptors and Reprogramming of Adipogenesis: An Early-Life Risk Factor for Childhood Obesity. Childhood Obesity, 14(1), 18–25.

    Article  Google Scholar 

  • Shidaifat, F. 2001. Effect of activin-A on goat granulosa cell steroidogenesis. Theriogenology, 56(4), 591–599.

    Article  CAS  Google Scholar 

  • Sifakis, S., Androutsopoulos, V. P., Tsatsakis, A. M. and Spandidos, D. A. 2017. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems. Environmental Toxicology and Pharmacology, 51, 56–70.

    Article  CAS  Google Scholar 

  • Wagner, M., Kienle, C., Vermeirssen, E. L. M. and Oehlmann, J. 2017. Endocrine disruption and in vitro ecotoxicology: Recent advances and approaches. Advances in Biochemical Engineering/Biotechnology, 157, 1–58.

    Article  CAS  Google Scholar 

  • Wang, Z., Kottawatta, K. S. A., Kodithuwakku, S. P., Fernando, T. S., Lee, Y. L., Ng, E. H. Y., Yeung, W. S. B. and Lee, K. F. 2021. The fungicide Mancozeb reduces spheroid attachment onto endometrial epithelial cells through downregulation of estrogen receptor β and integrin β3 in Ishikawa cells. Ecotoxicology and Environmental Safety, 208 (January 2021), 111606.

  • Wijayagunawardane, M. P. B., Kodithuwakku, S. P., Yamamoto, D. and Miyamoto, A. 2005. Vascular endothelial growth factor system in the cow oviduct: A possible involvement in the regulation of oviductal motility and embryo transport. Molecular Reproduction and Development, 72(4), 511–520.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the editorial comments made by Dr. Dimanthi V. Jayatilake, Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka.

Funding

This study was partially funded by the grants from the National Science Foundation, Sri Lanka (grant no. NSF /RG/2014/06); International Foundation for Science, Sweden (grant no. B-5367/1); and National Research Council, Sri Lanka (grant no. 13–059) to SPK.

Author information

Authors and Affiliations

Authors

Contributions

SPK, BA, CR, and KFL conceived and designed the research. ID, SK, BA, and MP conducted experiments. IP contributed with the progesterone assays. ID, SK, MP, and SPK analyzed data. ID, MP, KFL, and SPK wrote the manuscript. SPK, CR, and KFL secured funding for research. All authors read and approved the manuscript.

Ethics declarations

Informed consent

None required.

Consent to participate

Not applicable.

Consent for publication

All authors have consented to publish the content in the manuscript.

Statement of animal rights

Not applicable since the study used slaughterhouse samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinisri, I., Kodikara, S., Prasadani, M. et al. Impairment of caprine oocyte maturation in vitro and alteration of granulosa cells functions by widely used fungicide mancozeb. Trop Anim Health Prod 53, 406 (2021). https://doi.org/10.1007/s11250-021-02854-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-02854-5

Keywords

Navigation