Skip to main content
Log in

Tribological Behavior of Multi-scaled Patterned Surfaces Machined Through Inclined End Milling and Micro Shot Blasting

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Surface texturing is one mechanism that friction coefficients in both dry and lubricated contacts can be reduced compared with untextured, flat surfaces. End milling and shot blasting are two processes used to produce surface textures, including monolithic textures that have one type of surface feature, as well as multi-scale roughness features when two texturing processes are sequentially used. In such surfaces, we have observed that surface texturing decreases the measured friction coefficient under lubricated conditions, and that greater reductions in the friction coefficient are observed for those surfaces that had been both end milled and shot blasted. Simulations replicating the experiments suggest that the greatest factor contributing to the reduced friction observed for the textured surfaces is a result of increased fluid pressure in the contact region resulting from cavitation of the lubricant. However, a substantial decrease in the depth of the dimples on worn surfaces was also observed, suggesting that entrapment of wear particles within the surface texture features may also influence the measured friction coefficient. Alongside friction measurements, analysis of the wear track depth showed that surface texturing also has a beneficial influence on the calculated Archard wear coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bruzzone, A.A.G., Costa, H.L., Lonardo, P.M., Lucca, D.A.: Advances in engineered surfaces for functional performance. CIRP Ann. - Manuf. Technol. 57, 750–769 (2008). https://doi.org/10.1016/j.cirp.2008.09.003

    Article  Google Scholar 

  2. Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38, 249–256 (2005). https://doi.org/10.1016/j.triboint.2004.08.008

    Article  CAS  Google Scholar 

  3. Patankar, N.A.: Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter. 6, 1613 (2010). https://doi.org/10.1039/b923967g

    Article  CAS  Google Scholar 

  4. Matsumura, T., Takahashi, S.: Machining of micro dimples in milling for functional surfaces, In: Proceedings of the 14th International ESAFORM Conference on Material Forming, pp. 567–572 (2011)

  5. Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127, 248 (2005). https://doi.org/10.1115/1.1828070

    Article  Google Scholar 

  6. Resendiz, J., Graham, E., Egberts, P., Park, S.S.: Directional friction surfaces through asymmetrically shaped dimpled surfaces patterned using inclined flat end milling, Tribol. Int. 91 (2015) 67–73

    Article  CAS  Google Scholar 

  7. Graham, E., Park, C.I., Park, S.S.: Force modeling and applications of inclined ball end milling of micro-dimpled surfaces. Int. J. Adv. Manuf. Technol. 70, 689–700 (2013). https://doi.org/10.1007/s00170-013-5310-5

    Article  Google Scholar 

  8. Chae, J., Park, S.S., Freiheit, T.: Investigation of micro-cutting operations. Int. J. Mach. Tools Manuf. 46, 313–332 (2006). https://doi.org/10.1016/j.ijmachtools.2005.05.015

    Article  Google Scholar 

  9. Greiner, C., Del Campo, A., Arzt, E.: Adhesion of bioinspired micropatterned surfaces: effects of pillar radius, aspect ratio, and preload. Langmuir. 23, 3495–3502 (2007). https://doi.org/10.1021/la0633987

    Article  CAS  Google Scholar 

  10. Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I.: The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribol. Int. 38, 219–225 (2005). https://doi.org/10.1016/j.triboint.2004.08.004

    Article  CAS  Google Scholar 

  11. Aspinwall, D., Wise, M., Stout, K.: Electrical discharge texturing. Int. J. 32, 183–193 (1992). http://www.sciencedirect.com/science/article/pii/089069559290077T. Accessed Dec 5 2014

    Article  Google Scholar 

  12. Tseng, A.A.: Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14, R15–R34 (2004). https://doi.org/10.1088/0960-1317/14/4/R01

    Article  CAS  Google Scholar 

  13. Greiner, C., Merz, T., Braun, D., Codrignani, A., Magagnato, F.: Optimum dimple diameter for friction reduction with laser surface texturing: the effect of velocity gradient, Surf. Topogr. Metrol. Prop. 3 (2015). https://doi.org/10.1088/2051-672X/3/4/044001

    Google Scholar 

  14. Meng, F., Zhou, R., Davis, T., Cao, J., Wang, Q.J., Hua, D., Liu, J.: Study on effect of dimples on friction of parallel surfaces under different sliding conditions. Appl. Surf. Sci. 256, 2863–2875 (2010). https://doi.org/10.1016/j.apsusc.2009.11.041

    Article  CAS  Google Scholar 

  15. Galda, L., Pawlus, P., Sep, J.: Dimples shape and distribution effect on characteristics of Stribeck curve. Tribol. Int. 42, 1505–1512 (2009). https://doi.org/10.1016/j.triboint.2009.06.001

    Article  CAS  Google Scholar 

  16. Ramesh, A., Akram, W., Mishra, S.P., Cannon, A.H., Polycarpou, A.A., King, W.P.: Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication. Tribol. Int. 57, 170–176 (2013). https://doi.org/10.1016/j.triboint.2012.07.020

    Article  CAS  Google Scholar 

  17. Li, K., Yao, Z., Hu, Y., Gu, W.: Friction and wear performance of laser peen textured surface under starved lubrication. Tribol. Int. 77, 97–105 (2014). https://doi.org/10.1016/j.triboint.2014.04.017

    Article  CAS  Google Scholar 

  18. Lu, X., Khonsari, M.M.: An experimental investigation of dimple effect on the stribeck curve of journal bearings. Tribol. Lett. 27, 169–176 (2007). https://doi.org/10.1007/s11249-007-9217-x

    Article  Google Scholar 

  19. Yamakiri, H., Sasaki, S., Kurita, T., Kasashima, N.: Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water. Tribol. Int. 44, 579–584. https://doi.org/10.1016/j.triboint.2010.11.002 (2011)

    Article  CAS  Google Scholar 

  20. Gropper, D., Wang, L., Harvey, T.J.: Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings. Tribol. Int. 94, 509–529 (2016). https://doi.org/10.1016/j.triboint.2015.10.009

    Article  Google Scholar 

  21. Vladescu, S.C., Olver, A.V., Pegg, I.G., Reddyhoff, T.: The effects of surface texture in reciprocating contacts - An experimental study. Tribol. Int. 82, 28–42 (2015). https://doi.org/10.1016/j.triboint.2014.09.015

    Article  CAS  Google Scholar 

  22. Voevodin, A.A., Zabinski, J.S.: Laser surface texturing for adaptive solid lubrication. Wear. 261, 1285–1292 (2006). https://doi.org/10.1016/j.wear.2006.03.013

    Article  CAS  Google Scholar 

  23. Wang, X., Kato, K., Adachi, K., Aizawa, K.: Loads carrying capacity map for the surface texture design of SiC thrust bearing sliding in water. Tribol. Int. 36, 189–197 (2003). https://doi.org/10.1016/S0301-679X(02)00145-7

    Article  CAS  Google Scholar 

  24. Qiu, Y., Khonsari, M.M.: Experimental investigation of tribological performance of laser textured stainless steel rings. Tribol. Int. 44, 635–644 (2011). https://doi.org/10.1016/j.triboint.2011.01.003

    Article  CAS  Google Scholar 

  25. Jeong-Du Kim and Kang, Y.-H.: High-speed machining of aluminium using diamond end mills. Int. J. Mnch. Tools Manufact. 37, 1155–1165 (1997)

    Article  Google Scholar 

  26. Heaney, P.J., Sumant, A.V., Torres, C.D., Carpick, R.W., Pfefferkorn, F.E.: Diamond coatings for micro end mills: enabling the dry machining of aluminum at the micro-scale. Diam. Relat. Mater. 17, 223–233 (2008). https://doi.org/10.1016/j.diamond.2007.12.009

    Article  CAS  Google Scholar 

  27. ASM Handbook Volume 2: properties and selection: nonferrous alloys and special-purpose materials, ASM International, 1990

  28. Dobrovinskaya Elena, R., Leonid, A.: Lytvynov. Valerian Pishchik, Sapphire: Material, Manufacturing, Applications, Springer Science & Business Media, (2009). https://doi.org/10.1007/978-0-387-85695-7

    Book  Google Scholar 

  29. Profito, F.J., Zachariadis, D.C., Tomanik, E.: One dimensional mixed lubrication regime model for textured piston rings, (2011)

  30. Prófito, F.J.: Modelagem Unidimensional Do Regime Misto De Lubrificação Aplicada a Superfícies Texturizadas, (2010)

  31. Greenwood, J.A., Tripp, J.H., The contact of two nominally flat rough surfaces, Proc. Inst. Mech. Eng. (1970). https://doi.org/10.1243/PIME

    Article  Google Scholar 

  32. Greiner, C., Schäfer, M., Popp, U., Gumbsch, P.: Contact splitting and the effect of dimple depth on static friction of textured surfaces. ACS Appl. Mater. Interfaces. 6, 7986–7990 (2014). https://doi.org/10.1021/am500879m

    Article  CAS  Google Scholar 

  33. Hu, T., Hu, L., Ding, Q., The effect of laser surface texturing on the tribological behavior of Ti-6Al-4V, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 226:854–863 (2012) https://doi.org/10.1177/1350650112450801

    Article  CAS  Google Scholar 

  34. Ito, H., Kaneda, K., Yuhta, T., Nishimura, I., Yasuda, K., Matsuno, T.: Reduction of polyethylene wear by concave dimples on the frictional surface in artificial hip joints. J. Arthroplasty. 15, 332–338 (2000). https://doi.org/10.1016/S0883-5403(00)90670-3

    Article  CAS  Google Scholar 

  35. Nakano, M., Korenaga, A., Korenaga, A., Miyake, K., Murakami, T., Ando, Y., Usami, H., Sasaki, S.: Applying micro-texture to cast iron surfaces to reduce the friction coefficient under lubricated conditions. Tribol. Lett. 28, 131–137 (2007). https://doi.org/10.1007/s11249-007-9257-2

    Article  CAS  Google Scholar 

  36. Zhang, B., Huang, W., Wang, J., Wang, X.: Comparison of the effects of surface texture on the surfaces of steel and UHMWPE. Tribol. Int. 65, 138–145 (2013). https://doi.org/10.1016/j.triboint.2013.01.004

    Article  CAS  Google Scholar 

  37. Brizmer, V., Kligerman, Y., Etsion, I.: A laser surface textured parallel thrust bearing. Tribol. Trans. 46, 397–403 (2003). https://doi.org/10.1080/05698190490426007

    Article  CAS  Google Scholar 

  38. Cupillard, S., Glavatskih, S., Cervantes, M.J., Computational fluid dynamics analysis of a journal bearing with surface texturing, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 222:97–107 (2008) https://doi.org/10.1243/13506501JET319

    Article  Google Scholar 

  39. Dobrica, M.B., Fillon, M., Pascovici, M.D., Cicone, T., Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach, Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 224:737–750 (2010) https://doi.org/10.1243/13506501JET673

    Article  Google Scholar 

  40. Meng, F.M., Yang, T., Preliminary study on mechanism of cavitation in lubricant of textured sliding bearing, Proc. Inst. Mech. Eng. Part J-Journal Eng. Tribol. 227: 695–708 (2013) https://doi.org/10.1177/1350650112468560

    Article  Google Scholar 

  41. Shinkarenko, A., Kligerman, Y., Etsion, I.: The effect of surface texturing in soft elasto-hydrodynamic lubrication. Tribol. Int. 42, 284–292 (2009). https://doi.org/10.1016/j.triboint.2008.06.008

    Article  CAS  Google Scholar 

  42. Zhang, J., Meng, Y.: Direct observation of cavitation phenomenon and hydrodynamic lubrication analysis of textured surfaces. Tribol. Lett. 46, 147–158 (2012). https://doi.org/10.1007/s11249-012-9935-6

    Article  CAS  Google Scholar 

  43. Tang, W., Zhou, Y., Zhu, H., Yang, H.: The effect of surface texturing on reducing the friction and wear of steel under lubricated sliding contact. Appl. Surf. Sci. 273, 199–204 (2013). https://doi.org/10.1016/j.apsusc.2013.02.013

    Article  CAS  Google Scholar 

  44. Křupka, I., Poliščuk, R., Hartl, M.: Behavior of thin viscous boundary films in lubricated contacts between micro-textured surfaces. Tribol. Int. 42, 535–541 (2009). https://doi.org/10.1016/j.triboint.2008.03.013

    Article  CAS  Google Scholar 

  45. Křupka, I., Hartl, M.: The influence of thin boundary films on real surface roughness in thin film, mixed EHD contact. Tribol. Int. 40, 1553–1560 (2007). https://doi.org/10.1016/j.triboint.2006.10.008

    Article  CAS  Google Scholar 

  46. Křupka, I., Hartl, M.: The effect of surface texturing on thin EHD lubrication films. Tribol. Int. 40, 1100–1110 (2007). https://doi.org/10.1016/j.triboint.2006.10.007

    Article  CAS  Google Scholar 

  47. Mourier, L., Lubrecht, A.A., Donnet C. Mazuyer, D. Transient increase of film thickness in micro-textured EHL contacts, Tribol. Int. 39, 1745–1756 (2006). https://doi.org/10.1016/j.triboint.2006.02.037

    Article  CAS  Google Scholar 

  48. Rupert, T.J., Schuh, C.A.: Sliding wear of nanocrystalline Ni-W: structural evolution and the apparent breakdown of Archard scaling. Acta Mater. 58, 4137–4148 (2010). https://doi.org/10.1016/j.actamat.2010.04.005

    Article  CAS  Google Scholar 

  49. Mandal, D., Dutta, B.K., Panigrahi, S.C.: Wear and friction behavior of stir cast aluminium-base short steel fiber reinforced composites. Wear. 257, 654–664 (2004). https://doi.org/10.1016/j.wear.2004.02.006

    Article  CAS  Google Scholar 

  50. Kim, D.E., Cha, K.H., Sung, I.H., Bryan, J.: Design of surface micro-structures for friction control in micro-systems applications. CIRP Ann. - Manuf. Technol. 51, 495–498 (2002). https://doi.org/10.1016/S0007-8506(07)61569-8

    Article  Google Scholar 

  51. Borghi, A., Gualtieri, E., Marchetto, D., Moretti, L., Valeri, S.: Tribological effects of surface texturing on nitriding steel for high-performance engine applications. Wear. 265, 1046–1051 (2008). https://doi.org/10.1016/j.wear.2008.02.011

    Article  CAS  Google Scholar 

  52. Xing, Y., Deng, J., Wu, Z., Cheng, H.: Effect of regular surface textures generated by laser on tribological behavior of Si3N4/TiC ceramic. Appl. Surf. Sci. 265, 823–832 (2013). https://doi.org/10.1016/j.apsusc.2012.11.127

    Article  CAS  Google Scholar 

  53. Ryk, G., Etsion, I.: Testing piston rings with partial laser surface texturing for friction reduction. Wear. 261, 792–796 (2006). https://doi.org/10.1016/j.wear.2006.01.031

    Article  CAS  Google Scholar 

  54. Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I.: The effect of laser texturing of steel surfaces and speed-load parameters on the transition of lubrication regime from boundary to hydrodynamic. Tribol. Trans. 47, 299–307 (2004). https://doi.org/10.1080/05698190490440902

    Article  CAS  Google Scholar 

  55. Ryk, G., Kligerman, Y., Etsion, I.: Experimental investigation of laser surface texturing for reciprocating automotive components. Tribol. Trans. 45, 444–449 (2002). https://doi.org/10.1080/10402000208982572

    Article  CAS  Google Scholar 

  56. Costa, H.L., Hutchings, I.M.: Hydrodynamic lubrication of textured steel surfaces under reciprocating sliding conditions. Tribol. Int. 40, 1227–1238 (2007). https://doi.org/10.1016/j.triboint.2007.01.014

    Article  CAS  Google Scholar 

  57. Yu, H., Wang, X., Zhou, F.: Geometric shape effects of surface texture on the generation of hydrodynamic pressure between conformal contacting surfaces. Tribol. Lett. 37, 123–130 (2010). https://doi.org/10.1007/s11249-009-9497-4

    Article  Google Scholar 

  58. Braun, D., Greiner, C., Schneider, J., Gumbsch, P.: Efficiency of laser surface texturing in the reduction of friction under mixed lubrication. Tribol. Int. 77, 142–147 (2014). https://doi.org/10.1016/j.triboint.2014.04.012

    Article  CAS  Google Scholar 

  59. Liew, K.W., Kok, C.K., Ervina, M.N., Efzan: Effect of EDM dimple geometry on friction reduction under boundary and mixed lubrication. Tribol. Int. 101, 1–9 (2016). https://doi.org/10.1016/j.triboint.2016.03.029

    Article  CAS  Google Scholar 

  60. Wakuda, M., Yamauchi, Y., Kanzaki, S., Yasuda, Y.: Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear. 254, 356–363 (2003). https://doi.org/10.1016/S0043-1648(03)00004-8

    Article  CAS  Google Scholar 

  61. Vilhena, L.M., Podgornik, B., Vižintin, J., Možina, J.: Influence of texturing parameters and contact conditions on tribological behavior of laser textured surfaces. Meccanica. 46, 567–575 (2011). https://doi.org/10.1007/s11012-010-9316-x

    Article  Google Scholar 

  62. Wang, X., Liu, W., Zhou, F., Zhu, D.: Preliminary investigation of the effect of dimple size on friction in line contacts. Tribol. Int. 42, 1118–1123 (2009). https://doi.org/10.1016/j.triboint.2009.03.012

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge to Consejo Nacional de Ciencia y Tecnologia (CONACYT) México, and the Natural Sciences and Engineering Research Council (NSERC) of Canada for providing funds to support the study, and Carrie Lin for her help to develop the wear analysis code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Egberts.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Resendiz, J., Egberts, P. & Park, S.S. Tribological Behavior of Multi-scaled Patterned Surfaces Machined Through Inclined End Milling and Micro Shot Blasting. Tribol Lett 66, 132 (2018). https://doi.org/10.1007/s11249-018-1086-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1086-y

Keywords

Navigation