Skip to main content

Advertisement

Log in

Antifriction and Antiwear Properties of an Ionic Liquid with Fluorine-Containing Anion Used as Lubricant Additive

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Tribological behavior of trihexyltetradecylphosphonium bis(trifluoromethylsulfonyl) imide [P66614][NTf2] ionic liquid (IL) used as additive in a diester oil at concentrations of 0.25, 0.5 and 1 wt% was studied in this research. The IL solubility in the base oil was measured using the inductively coupled plasma mass spectrometry (ICP-MS) technique, and corrosion analysis was done at room temperature at relative humidity of 49–77%. Tribological tests were conducted for 30 min at room temperature, 15 Hz frequency, 4 mm of stroke length, a load of 80 N (corresponding to 2 GPa of maximum contact pressure) and relative humidity of 35–53%. Friction coefficient was recorded during tests, and the wear scar was measured by confocal microscopy. Worn surface was also analyzed by SEM, EDS and XPS. Results showed that a saturated solution of [P66614][NTf2] in the base oil contains about 30 wt% of IL and corrosion activity for the highest concentration of IL (1 wt%) was not found after a 20-day test. Although the base oil and the mixtures had similar friction behavior, only the 1 wt% sample exhibited slightly lower wear volume than the base oil. SEM images exhibited similar wear track width (707–796 µm) and wear mechanism (adhesive) for all samples tested. In addition, the EDS spectra only showed the elements present in the steel. Finally, the XPS measurements could not detect differences regarding iron chemical state among the samples, which is consistent with the tribological behavior obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fraser, K.J., MacFarlane, D.R.: Phosphonium-based ionic liquids: an overview. Aust. J. Chem. 62, 309–321 (2009)

    Article  Google Scholar 

  2. Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun. 21, 2244–2245 (2001)

    Article  Google Scholar 

  3. Minami, I.: Ionic liquids in tribology. Molecules 14, 2286–2305 (2009)

    Article  Google Scholar 

  4. Bermúdez, M.D., Jiménez, A.E., Sanes, J., Carrión, F.J.: Ionic liquids as advanced lubricant fluids. Molecules 14, 2888–2908 (2009)

    Article  Google Scholar 

  5. Palacio, M., Bhushan, B.: A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010)

    Article  Google Scholar 

  6. Somers, A., Howlett, P., MacFarlane, D., Forsyth, M.: A review of ionic liquid lubricants. Lubricants 1, 3–21 (2013)

    Article  Google Scholar 

  7. Zhou, F., Liang, Y., Liu, W.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)

    Article  Google Scholar 

  8. Van Rensselar, J.: Unleashing the potential of ionic liquids. Tribol. Lubr. Technol. (2010)

  9. Liu, W., Ye, C., Gong, Q., Wang, H., Wang, P.: Tribological performance of room-temperature ionic liquids as lubricant. Tribol. Lett. 13, 81–85 (2002)

    Article  Google Scholar 

  10. Chen, Y.M., Zeng, Z.X., Yang, S.R., Zhang, J.Y.: The tribological performance of BCN films under ionic liquids lubrication. Diam. Relat. Mater. 18, 20–26 (2009)

    Article  Google Scholar 

  11. Sanes, J., Carrión, F.J., Bermúdez, M.D., Martínez-Nicolás, G.: Ionic liquids as lubricants of polystyrene and polyamide 6-steel contacts. Preparation and properties of new polymer-ionic liquid dispersions. Tribol. Lett. 21, 121–133 (2006)

    Article  Google Scholar 

  12. Kamimura, H., Kubo, T., Minami, I., Mori, S.: Effect and mechanism of additives for ionic liquids as new lubricants. Tribol. Int. 40, 620–625 (2007)

    Article  Google Scholar 

  13. Qu, J., Truhan, J.J., Dai, S., Luo, H., Blau, P.J.: Ionic liquids with ammonium cations as lubricants or additives. Tribol. Lett. 22, 207–214 (2006)

    Article  Google Scholar 

  14. Jiménez, A.E., Bermúdez, M.D., Iglesias, P., Carrión, F.J., Martínez-Nicolás, G.: 1-N-alkyl -3-methylimidazolium ionic liquids as neat lubricants and lubricant additives in steel–aluminium contacts. Wear 260, 766–782 (2006)

    Article  Google Scholar 

  15. Battez, A.H., González, R., Viesca, J.L., Blanco, D., Asedegbega, E., Osorio, A.: Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266, 1224–1228 (2009)

    Article  Google Scholar 

  16. Phillips, B.S., John, G., Zabinski, J.S.: Surface chemistry of fluorine containing ionic liquids on steel substrates at elevated temperature using Mössbauer spectroscopy. Tribol. Lett. 26, 85–91 (2007)

    Article  Google Scholar 

  17. Mu, Z., Liu, W., Zhang, S., Zhou, F.: Functional room-temperature ionic liquids as lubricants for an aluminum-on-steel system. Chem. Lett. 33(5), 524–525 (2004)

    Article  Google Scholar 

  18. Torimoto, T., Tsuda, T., Okazaki, K.I., Kuwabata, S.: New frontiers in materials science opened by ionic liquids. Adv. Mater. 22, 1196–1221 (2010)

    Article  Google Scholar 

  19. García, A., González, R., Hernández Battez, A., Viesca, J.L., Monge, R., Fernández-González, A., Hadfield, M.: Ionic liquids as a neat lubricant applied to steel-steel contacts. Tribol. Int. 72, 42–50 (2014)

    Article  Google Scholar 

  20. Uerdingen, M., Treber, C., Balser, M., Schmitt, G., Werner, C.: Corrosion behaviour of ionic liquids. Green Chem. 7, 321 (2005)

    Article  Google Scholar 

  21. González, R., Hernández Battez, A., Blanco, D., Viesca, J.L., Fernández-González, A.: Lubrication of TiN, CrN and DLC PVD coatings with 1-butyl-1- methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Tribol. Lett. 40, 269–277 (2010)

    Article  Google Scholar 

  22. Blanco, D., González, R., Hernández Battez, A., Viesca, J.L., Fernández-Gonzlez, A.: Use of ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl) trifluorophosphate as base oil additive in the lubrication of TiN PVD coating. Tribol. Int. 44, 645–650 (2011)

    Article  Google Scholar 

  23. Blanco, D., Battez, A.H., Viesca, J.L., González, R., Fernández-González, A.: Lubrication of CrN coating with ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate ionic liquid as additive to PAO 6. Tribol. Lett. 41, 295–302 (2011)

    Article  Google Scholar 

  24. Viesca, J.L., García, A., Hernández Battez, A., González, R., Monge, R., Fernández-González, A., Hadfield, M.: FAP- anion ionic liquids used in the lubrication of a steel–steel contact. Tribol. Lett. 52, 431–437 (2013)

    Article  Google Scholar 

  25. Minami, I., Kita, M., Kubo, T., Nanao, H., Mori, S.: The tribological properties of ionic liquids composed of trifluorotris(pentafluoroethyl) phosphate as a hydrophobic anion. Tribol. Lett. 30, 215–223 (2008)

    Article  Google Scholar 

  26. Otero, I., López, E.R., Reichelt, M., Fernández, J.: Friction and anti-wear properties of two tris(pentafluoroethyl) trifluorophosphate ionic liquids as neat lubricants. Tribol. Int. 70, 104–111 (2014)

    Article  Google Scholar 

  27. Viesca, J.L., Battez, A.H., González, R., Reddyhoff, T., Pérez, A.T., Spikes, H.A.: Assessing boundary film formation of lubricant additivised with 1-hexyl-3-methylimidazolium tetrafluoroborate using ECR as qualitative indicator. Wear 269, 112–117 (2010)

    Article  Google Scholar 

  28. Hernández Battez, A., González, R., Viesca, J.L., Fernández-González, A., Hadfield, M.: Lubrication of PVD coatings with ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate. Tribol. Int. 58, 71–78 (2013)

    Article  Google Scholar 

  29. Somers, A.E., Biddulph, S.M., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: A comparison of phosphorus and fluorine containing IL lubricants for steel on aluminium. Phys. Chem. Chem. Phys. 14, 8224 (2012)

    Article  Google Scholar 

  30. Viesca, J.-L., Anand, M., Blanco, D., Fernández-González, A., García, A., Hadfield, M.: Tribological behaviour of PVD coatings lubricated with a FAP − anion-based ionic liquid used as an additive. Lubricants 4, 8 (2016)

    Article  Google Scholar 

  31. Kheireddin, B.A., Lu, W., Chen, I.C., Akbulut, M.: Inorganic nanoparticle-based ionic liquid lubricants. Wear 303, 185–190 (2013)

    Article  Google Scholar 

  32. Pisarova, L., Gabler, C., Dörr, N., Pittenauer, E., Allmaier, G.: Thermo-oxidative stability and corrosion properties of ammonium based ionic liquids. Tribol. Int. 46, 73–83 (2012)

    Article  Google Scholar 

  33. Cai, M., Liang, Y., Yao, M., Xia, Y., Zhou, F., Liu, W.: Imidazolium ionic liquids as antiwear and antioxidant additive in poly(ethylene glycol) for steel/steel contacts. ACS Appl. Mater. Interfaces 2, 870–876 (2010)

    Article  Google Scholar 

  34. Gabler, C., Dörr, N., Allmaier, G.: Influence of cationic moieties on the tribolayer constitution shown for bis(trifluoromethylsulfonyl)imide based ionic liquids studied by X-ray photoelectron spectroscopy. Tribol. Int. 80, 90–97 (2014)

    Article  Google Scholar 

  35. Monge, R., González, R., Hernández Battez, A., Fernández-González, A., Viesca, J.L., García, A., Hadfield, M.: Ionic liquids as an additive in fully formulated wind turbine gearbox oils. Wear 328–329, 50–63 (2015)

    Article  Google Scholar 

  36. Somers, A.E., Howlett, P.C., Sun, J., MacFarlane, D.R., Forsyth, M.: Transition in wear performance for ionic liquid lubricants under increasing load. Tribol. Lett. 40, 279–284 (2010)

    Article  Google Scholar 

  37. Murakami, T., Kaneda, K., Nakano, M., Korenaga, A., Mano, H., Sasaki, S.: Tribological properties of Fe7Mo6-based alloy under two ionic liquid lubrications. Tribol. Int. 41, 1083–1089 (2008)

    Article  Google Scholar 

  38. Bandeira, P., Monteiro, J., Baptista, A.M., Magalhães, F.D.: Tribological performance of PTFE-based coating modified with microencapsulated [HMIM][NTf2] ionic liquid. Tribol. Lett. 59, 13 (2015)

    Article  Google Scholar 

  39. Somers, A.E., Khemchandani, B., Howlett, P.C., Sun, J., Macfarlane, D.R., Forsyth, M.: Ionic liquids as antiwear additives in base oils: influence of structure on miscibility and antiwear performance for steel on aluminum. ACS Appl. Mater. Interfaces 5, 11544–11553 (2013)

    Article  Google Scholar 

  40. Minami, I., Inada, T., Sasaki, R., Nanao, H.: Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 40, 225–235 (2010)

    Article  Google Scholar 

  41. Qu, J., Blau, P.J., Dai, S., Luo, H., Meyer, H.M.: Ionic liquids as novel lubricants and additives for diesel engine applications. Tribol. Lett. 35, 181–189 (2009)

    Article  Google Scholar 

  42. Mistry, K., Fox, M.F., Priest, M.J.: Lubrication of an electroplated nickel matrix silicon carbide coated eutectic aluminium–silicon alloy automotive cylinder bore with an ionic liquid as a lubricant additive. Eng. Tribol. 223, 563–569 (2009)

    Google Scholar 

  43. Schneider, A., Brenner, J., Tomastik, C., Franek, F.: Capacity of selected ionic liquids as alternative EP/AW. Lubr. Sci. 22, 215–223 (2010)

    Article  Google Scholar 

  44. Jiménez, A.E., Bermúdez, M.D.: Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium–steel lubrication. Wear 265, 787–798 (2008)

    Article  Google Scholar 

  45. Hernández Battez, A., Bartolomé, M., Blanco, D., Viesca, J.L., Fernández-González, A., González, R.: Phosphonium cation-based ionic liquids as neat lubricants: physicochemical and tribological performance. Tribol. Int. 95, 118–131 (2016)

    Article  Google Scholar 

  46. Espinosa, T., Sanes, J., Bermúdez, M.-D.: New alkylether–thiazolium room-temperature ionic liquid lubricants. Surface interactions and tribological performance. ACS Appl. Mater. Interfaces 8, 18631–18639 (2016)

    Article  Google Scholar 

  47. Mahrova, M., Pagano, F., Pejakovic, V., Valea, A., Kalin, M., Igartua, A., Tojo, E.: Pyridinium based dicationic ionic liquids as base lubricants or lubricant additives. Tribol. Int. 82, 245–254 (2015)

    Article  Google Scholar 

  48. Fan, M., Zhang, C., Guo, Y., Zhang, R., Lin, L., Yang, D., Zhou, F., Liu, W.: An investigation on the friction and wear properties of perfluorooctane sulfonate ionic liquids. Tribol. Lett. 63, 11 (2016)

    Article  Google Scholar 

  49. Otero, I., López, E.R., Reichelt, M., Villanueva, M., Salgado, J., Fernández, J.: Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact. ACS Appl. Mater. Interfaces 6, 13115–13128 (2014)

    Article  Google Scholar 

  50. Wu, J., Lu, X., Feng, X., Shi, Y.: Halogen-free ionic liquids as excellent lubricants for PEEK-stainless steel contacts at elevated temperatures. Tribol. Int. 104, 1–9 (2016)

    Article  Google Scholar 

  51. Zhang, S., Hu, L., Qiao, D., Feng, D., Wang, H.: Vacuum tribological performance of phosphonium-based ionic liquids as lubricants and lubricant additives of multialkylated cyclopentanes. Tribol. Int. 66, 289–295 (2013)

    Article  Google Scholar 

  52. Nainaparampil, J.J., Eapen, K.C., Sanders, J.H., Voevodin, A.A.: Ionic-liquid lubrication of sliding MEMS contacts: comparison of AFM liquid cell and device-level tests. J. Microelectromech. Syst. 16, 836–843 (2007)

    Article  Google Scholar 

  53. Anand, M., Hadfield, M., Viesca, J.L., Thomas, B., Hernández Battez, A., Austen, S.: Ionic liquids as tribological performance improving additive for in-service and used fully-formulated diesel engine lubricants. Wear 334–335, 67–74 (2015)

    Article  Google Scholar 

  54. Yu, B., Bansal, D.G., Qu, J., Sun, X., Luo, H., Dai, S., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012)

    Article  Google Scholar 

  55. Qu, J., Luo, H., Chi, M., Ma, C., Blau, P.J., Dai, S., Viola, M.B.: Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive. Tribol. Int. 71, 88–97 (2014)

    Article  Google Scholar 

  56. Barnhill, W.C., Qu, J., Luo, H., Meyer, H.M., Ma, C., Chi, M., Papke, B.L.: Phosphonium-organophosphate ionic liquids as lubricant additives: effects of cation structure on physicochemical and tribological characteristics. ACS Appl. Mater. Interfaces. 6, 22585–22593 (2014)

    Article  Google Scholar 

  57. Totolin, V., Minami, I., Gabler, C., Brenner, J., Dörr, N.: Lubrication mechanism of phosphonium phosphate ionic liquid additive in alkylborane-imidazole complexes. Tribol. Lett. 53, 421–432 (2014)

    Article  Google Scholar 

  58. Khemchandani, B., Somers, A., Howlett, P., Jaiswal, A.K., Sayanna, E., Forsyth, M.: A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants. Tribol. Int. 77, 171–177 (2014)

    Article  Google Scholar 

  59. Qu, J., Barnhill, W.C., Luo, H., Meyer, H.M., Leonard, D.N., Landauer, A.K., Kheireddin, B., Gao, H., Papke, B.L., Dai, S.: Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015)

    Article  Google Scholar 

  60. González, R., Bartolomé, M., Blanco, D., Viesca, J.L., Fernández-González, A., Battez, A.H.: Effectiveness of phosphonium cation-based ionic liquids as lubricant additive. Tribol. Int. 98, 82–93 (2016)

    Article  Google Scholar 

  61. Fredriksson, W., Edström, K.: XPS study of duplex stainless steel as a possible current collector in a Li-ion battery. Electrochim. Acta 79, 82–94 (2012)

    Article  Google Scholar 

  62. Gorzalski, A.S., Donley, C., Coronell, O.: Elemental composition of membrane foulant layers using EDS, XPS, and RBS. J. Membr. Sci. 522, 31–44 (2017)

    Article  Google Scholar 

  63. Prakash, A., Sundaram, K.B.: Optical and XPS studies of BCN thin films by co-sputtering of B4C and BN targets. Appl. Surf. Sci. 396, 484–491 (2017)

    Article  Google Scholar 

  64. Sharma, V., Gabler, C., Doerr, N., Aswath, P.B.: Mechanism of tribofilm formation with P and S containing ionic liquids. Tribol. Int. 92, 353–364 (2015)

    Article  Google Scholar 

  65. Beattie, D.A., Harmer-Bassell, S.L., Ho, T.T.M., Krasowska, M., Ralston, J., Sellaperumage, P.M.F., Wąsik, P.: Spectroscopic study of ionic liquids adsorption from solution onto gold. Phys. Chem. Chem. Phys. 17, 4199–4209 (2015)

    Article  Google Scholar 

  66. Mangolini, F., Rossi, A., Spencer, N.D.: Influence of metallic and oxidized iron/steel on the reactivity of triphenyl phosphorothionate in oil solution. Tribol. Int. 44, 670–683 (2011)

    Article  Google Scholar 

  67. Mayer, T.: Black spots on carbon steel after contact to lubricating oil with extreme pressure additives: an XPS study. Appl. Surf. Sci. 179, 257–262 (2001)

    Article  Google Scholar 

  68. Fernández Rico, J.E., Hernández Battez, A., García Cuervo, D.: Wear prevention characteristics of binary oil mixtures. Wear 253, 827–831 (2002)

    Article  Google Scholar 

  69. Cambiella, A., Benito, J.M., Pazos, C., Coca, J., Hernández, A., Fernández, J.E.: Formulation of emulsifiable cutting fluids and extreme pressure behaviour. J. Mater. Process. Technol. 184, 139–145 (2007)

    Article  Google Scholar 

  70. Hernández Battez, A., Fernandes, C.M.C.G., Martins, R.C., Bartolomé, M., González, R., Seabra, J.H.O.: Two phosphonium cation-based ionic liquids used as lubricant additive. Tribol. Int. 107, 233–239 (2017)

    Article  Google Scholar 

  71. Hernández Battez, A., Fernandes, C.M.C.G., Martins, R.C., Graça, B.M., Anand, M., Blanco, D., Seabra, J.H.O.: Two phosphonium cation-based ionic liquids used as lubricant additive. Part II: tribofilm analysis and friction torque loss in cylindrical roller thrust bearings at constant temperature. Tribol. Int. 109, 496–504 (2017)

    Article  Google Scholar 

  72. Fernandes, C.M.C.G., Battez, A.H., González, R., Monge, R., Viesca, J.L., García, A., Martins, R.C., Seabra, J.H.O.: Torque loss and wear of FZG gears lubricated with wind turbine gear oils using an ionic liquid as additive. Tribol. Int. 90, 306–314 (2015)

    Article  Google Scholar 

  73. González, R., Battez, A.H., Viesca, J.L., Higuera-Garrido, A., Fernández-González, A.: Lubrication of DLC coatings with two tris(pentafluoroethyl)trifluorophosphate anion-based ionic liquids. Tribol. Trans. 56, 887–895 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the Ministry of Economy and Competitiveness (Spain) and FICYT (Foundation for the Promotion in Asturias of the Applied Scientific Research and Technology) for supporting the research projects STARLUBE (DPI2013-48348-C2-1-R), GRUPIN14-023 and MINECO-16-MAT2015-66747-R, within whose framework this research was conducted. The authors would also like to thank CRODA S.A. for kindly providing the base oil used for the development of this research. Finally, the Scientific-Technical Services at the University of Oviedo are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Blanco.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, D., González, R., Viesca, J.L. et al. Antifriction and Antiwear Properties of an Ionic Liquid with Fluorine-Containing Anion Used as Lubricant Additive. Tribol Lett 65, 66 (2017). https://doi.org/10.1007/s11249-017-0846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0846-4

Keywords

Navigation