Skip to main content
Log in

Effect of Surface Grooves on the Static Friction of an Elastic Slider

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Numerous studies have proved the usefulness of surface patterning for the modification of tribological performances of sliding contacts. Here, we investigate the effects of patterning on the tribological properties of a slider over a solid substrate. We show that, depending on the numerical density of surface grooves, the tribological properties can change significantly. A low density of surface patterning leads to a decrease of static friction force, while a higher density weakens this effect. Contrary to static friction, kinetic friction shows a much weaker dependence on surface patterning. The decrease is related to a non-uniform distribution of surface stress induced by patterning. We believe these findings and approach to be relevant for technological applications and related optimal design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Etsion, I.: Improving tribological performance of mechanical components by laser surface texturing. Tribol. Lett. 17, 733 (2004)

    Article  Google Scholar 

  2. Raeymaekers, B., Etsion, I., Talke, F.E.: Enhancing tribological performance of the magnetic tape/guide interface by laser surface texturing. Tribol. Lett. 27, 89 (2007)

    Article  Google Scholar 

  3. Prodanov, N., Gachot, C., Rosenkranz, A., Mücklich, F., Müser, M.H.: Contact mechanics of laser-textured surfaces. Tribol. Lett. 50, 41–48 (2013)

    Article  Google Scholar 

  4. Gachot, C., Rosenkranz, A., Reinert, L., Ramos-Moore, E., Souza, N., Müser, M.H., Mücklich, F.: Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry. Tribol. Lett. 49, 193–202 (2013)

    Article  Google Scholar 

  5. Pettersson, U., Jacobson, S.: Friction and wear properties of micro textured DLC coated surfaces in boundary lubricated sliding. Tribol. Lett. 17, 553 (2004)

    Article  Google Scholar 

  6. Blatter, A., Maillat, M., Pimenov, S.M., Shafeev, G.A., Simakin, A.V.: Lubricated friction of laser micro-patterned sapphire flats. Tribol. Lett. 4, 237 (1998)

    Article  Google Scholar 

  7. Mourier, L., Mazuyer, D., Lubrecht, A.A., Donnet, C.: Transient increase of film thickness in micro-textured EHL contacts. Tribol. Int. 39, 1745 (2006)

    Article  Google Scholar 

  8. Persson, B.N.J.: On the mechanism of adhesion in biological systems. J. Chem. Phys. 118(16), 7614 (2003)

    Article  Google Scholar 

  9. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.: Condens. Matter 17, R1 (2005)

    Google Scholar 

  10. Scherge, M., Gorb, S.N.: Biological Micro- and Nanotribology: Nature’s Solutions. Springer, Berlin (2001)

    Book  Google Scholar 

  11. Murarash, B., Itovich, Y., Varenberg, M.: Tuning elastomer friction by hexagonal surface patterning. Soft Matter 7, 5553 (2011)

    Article  Google Scholar 

  12. Federle, W., Barnes, W.J.P., Baumgartner, W., Drechsler, P., Smith, J.M.: Wet but not slippery: boundary friction in tree frog adhesive toe pads. J. R. Soc. Interface 3, 689 (2006)

    Article  Google Scholar 

  13. Borghi, A., Gualtieri, E., Marchetto, D., Moretti, L., Valeri, S.: Tribological effects of surface texturing on nitriding steel for high-performance engine applications. Wear 265, 1046 (2008)

    Article  Google Scholar 

  14. Gualtieri, E., Pugno, N., Rota, A., Spagni, A., Lepore, E., Valeri, S.: Role of roughness parameters on the tribology of randomly nano-textured silicon surface. J. Nanosci. Nanotechnol. 11, 9244 (2011)

    Article  Google Scholar 

  15. Pugno, N.: Nanotribology of Spiderman. In: Bellucci, S. (ed.) Physical Properties of Ceramic and Carbon Nanoscale Structures, pp. 111–136. Springer, Berlin (2011)

    Chapter  Google Scholar 

  16. Gualtieri, E., Borghi, A., Calabri, L., Pugno, N., Valeri, S.: Increasing nanohardness and reducing friction of nitride steel by laser surface texturing. Tribol. Int. 42, 699 (2009)

    Article  Google Scholar 

  17. Capozza, R., Fasolino, A., Ferrario, M., Vanossi, A.: Lubricated friction on nanopatterned surfaces via molecular dynamics simulations. Phys. Rev. B 77, 235432 (2008)

    Article  Google Scholar 

  18. Braun, O.M., Barel, I., Urbakh, M.: Dynamics of transition from static to kinetic friction. Phys. Rev. Lett. 103, 194301 (2009)

    Article  Google Scholar 

  19. Capozza, R., Rubinstein, S.M., Barel, I., Urbakh, M., Fineberg, J.: Stabilizing stick-slip friction. Phys. Rev. Lett. 107, 024301 (2011)

    Article  Google Scholar 

  20. Capozza, R., Barel, I., Urbakh, M: Probing and tuning frictional aging at the nanoscale. Sci. Rep. 3, 1896 (2013)

  21. Berthoud, P., Baumberger, T.: Shear stiffness of a solid–solid multicontact interface. Proc. R. Soc. Lond. A 454, 1615 (1998)

    Article  Google Scholar 

  22. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, Course of Theoretical Physics, vol. 7. Pergamon, New York (1986)

    Google Scholar 

  23. Greiner, C., Schafer, M., Pop, U., Gumbsch, P.: Contact splitting and the effect of dimple depth on static friction of textured surfaces. Appl. Mater. Interfaces 6, 7986 (2014)

    Article  Google Scholar 

  24. Capozza, R., Urbakh, M.: Static friction and the dynamics of interfacial rupture. Phys. Rev. B 86, 085430 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

RC is supported by Sinergia Contract CRSII2136287/1, and by ERC Advanced Grant 320796—MODPHYSFRICT. This work is also supported by the COST Action MP1303. “Understanding and Controlling Nano and Mesoscale Friction”. NMP is supported by the European Research Council (ERC StG Ideas 2011 BIHSNAM n. 279985 on “Bio-Inspired hierarchical super-nanomaterials”, ERC PoC 2013-1 REPLICA2 n. 619448 on “Large-area replication of biological anti-adhesive nanosurfaces”, ERC PoC 2013-2 KNOTOUGH n. 632277 on “Super-tough knotted fibres”), by the European Commission under the Graphene Flagship (WP10 “Nanocomposites”, n. 604391) and by the Provincia Autonoma di Trento (“Graphene Nanocomposites”, n. S116/2012-242637 and reg.delib. n. 2266.

Conflict of Interest

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Capozza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capozza, R., Pugno, N. Effect of Surface Grooves on the Static Friction of an Elastic Slider. Tribol Lett 58, 35 (2015). https://doi.org/10.1007/s11249-015-0510-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-015-0510-9

Keywords