Skip to main content
Log in

Third Body Behavior During Dry Sliding of Cold-Sprayed Al-Al2O3 Composites: In Situ Tribometry and Microanalysis

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Reciprocating sliding wear experiments were conducted on cold-sprayed pure aluminum and Al–22.6 wt% Al2O3 coatings using a custom-built in situ tribometer. Using a transparent sapphire counterface for the wear tests, the dynamic behavior of third body material in the contact was optically observed. The presence of Al2O3 particles led to greater stability of the transfer films adhering to the sapphire counterface, as well as greater stability of the friction coefficient and lower wear rates. Ex situ microanalysis of material in the wear tracks and transfer films suggests that the presence of Al2O3 particles promoted strain localization during sliding. This produced more uniform third body microstructures and protected the underlying aluminum matrix from deformation, which slowed the rate of transfer to the counterface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Davis, J.R. (ed.): Aluminum and Aluminum Alloys, chapter Corrosion Behavior, pp 579–622. ASM Specialty Handbook. ASM International (1993)

  2. Clyne, T.W., Withers, P.J.: An Introduction to Metal Matrix Composites, Chapter 9: Fabrication Processes, pp. 318–360. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  3. Deuis, R.L., Subramanian, C., Yellup, J.M.: Dry sliding wear of aluminium composites: a review. Compos. Sci. Technol. 57, 415–435 (1997)

    Article  Google Scholar 

  4. Venkataraman, B., Sundararajan, G.: The sliding wear behaviour of Al-SiC particulate composites: I. Macrobehaviour. Acta Mater. 44(2), 451–460 (1996)

    Article  Google Scholar 

  5. Alpas, A.T., Zhang, J.: Effect of microstructure (particulate size and volume fraction) and counterface material on the sliding wear resistance of particulate-reinforced aluminum matrix composites. Metall. Mater. Trans. A 25A, 969–983 (1994)

    Article  Google Scholar 

  6. Irissou, E., Legoux, J.-G., Arsenault, B., Moreau, C.: Investigation of Al-Al2O3 cold spray coating formation and properties. J. Therm. Spray Technol. 16(5–6), 661–668 (2007)

    Article  Google Scholar 

  7. Evans, A., San Marchi, C., Mortensen, A.: Metal Matrix Composites, pp. 9–38. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  8. Spencer, K., Fabijanic, D.M., Zhang, M.-X.: The use of Al-Al2O3 cold spray coatings to improve the surface properties of magnesium alloys. Surf. Coat. Technol. 204, 336–344 (2009)

    Article  Google Scholar 

  9. Tao, Y., Xiong, T., Sun, C., Jin, H., Hao, D., Li, T.: Effect of Al-Al2O3 on the properties of cold sprayed Al-Al2O3 composite coatings on AZ91D magnesium alloy. Appl. Surf. Sci. 256(1), 261–266 (2009)

    Article  Google Scholar 

  10. U.S. Department Of Defense Manufacturing Process Standard MIL-STD-3021, “Materials Deposition, Cold Spray,” 2008

  11. Assadi, H., Gärtner, F., Stoltenhoff, T., Kreye, H.: Bonding mechanism in cold gas spraying. Acta Mater. 51, 4379–4394 (2003)

    Article  Google Scholar 

  12. Gärtner, F., Stoltenhoff, T., Schmidt, T., Kreye, H.: The cold spray process and its potential for industrial applications. J. Therm. Spray Technol. 15(2), 223–232 (2006)

    Article  Google Scholar 

  13. Irissou, E., Legoux, J.-G., Ryabinin, A., Jodoin, B., Moreau, C.: Review on cold spray process and technology: part I-intellectual property. J. Therm. Spray Technol. 17(4), 495–516 (2008)

    Article  Google Scholar 

  14. Champagne, V.K.: The Cold Spray Materials Deposition Process: Fundamentals and Applications. Woodhead Publishing Limited, Cambridge (2007)

    Book  Google Scholar 

  15. Papyrin, A., Kosarev, V., Klinkov, K.V., Alkhimov, A., Fomin, V.M.: Cold Spray Technology. Elsevier, Oxford (2006)

    Google Scholar 

  16. Champagne, V.K.: The repair of magnesium rotorcraft components by cold spray. J. Fail. Anal. Prev. 8, 164–175 (2008)

    Article  Google Scholar 

  17. Kim, H.J., Windl, W., Rigney, D.A.: Structure and chemical analysis of aluminium wear debris: experiments and ab initio simulations. Acta Mater. 55, 6489–6498 (2007)

    Article  Google Scholar 

  18. Blau, P.J.: Mechanisms for transitional friction and wear behavior of sliding metals. Wear 72, 55–66 (1981)

    Article  Google Scholar 

  19. Cocks, M.: Interaction of sliding metal surfaces. J. Appl. Phys. 33(7), 2152–2161 (1962)

    Article  Google Scholar 

  20. Antler, M.: Processes of metal transfer and wear. Wear 7, 181–203 (1964)

    Article  Google Scholar 

  21. Prasad, S.V., Michael, J.R., Majumdar, B.S., Battaile, C.C.: On the evolution of friction- induced microstructures in single crystal nickel. Microsc. Microanal. 14(Suppl 2), 906–907 (2008)

    Article  Google Scholar 

  22. Venkataraman, B., Sundararajan, G.: The sliding wear behaviour of Al-SiC particulate composites: II. The characterization of subsurface deformation and correlation with wear behaviour. Acta Mater. 44(2), 451–460 (1996)

    Article  Google Scholar 

  23. Shockley, J.M., Strauss, H.W., Chromik, R.R., Brodusch, N., Gauvin, R., Irissou, E., Legoux, J.-G.: In situ tribometry of cold-sprayed Al-Al2O3 composite coatings. Surf. Coat. Technol. 215, 350–356 (2013)

    Article  Google Scholar 

  24. Berthier, Y.: Wear: Materials, Mechanisms and Practice, Chapter 7: Third-Body Reality: Consequences and Use of the Third-Body Concept to Solve Friction and Wear Problems, pp. 291–316. Wiley, New York (2005)

    Google Scholar 

  25. Biswas, S.K.: Wear: Materials, Mechanisms and Practice, Chapter 3: Wear of Metals: A Material Approach, pp. 21–36. Wiley, New York (2005)

    Google Scholar 

  26. Godet, Maurice: The third-body approach: a mechanical view of wear. Wear 100, 437–452 (1984)

    Article  Google Scholar 

  27. Godet, M.: Third-bodies in tribology. Wear 136(1), 29–45 (1990)

    Article  Google Scholar 

  28. Descartes, S., Berthier, Y.: Rheology and flows of solid third bodies: background and application to an MoS1:6 coating. Wear 253, 546–556 (2002)

    Article  Google Scholar 

  29. Chromik, R.R., Baker, C.C., Voevodin, A.A., Wahl, K.J.: In situ tribometry of solid lubricant nanocomposite coatings. Wear 262(9), 1239–1252 (2007)

    Article  Google Scholar 

  30. Strauss, H.W., Chromik, R.R., Hassani, S., Klemberg-Sapieha, J.E.: In situ tribology of nanocomposite Ti-Si-C-H coatings prepared by PE-CVD. Wear 272(1), 133–148 (2011)

    Article  Google Scholar 

  31. Stoyanov, P., Strauss, H.W., Chromik, R.R.: Scaling effects between micro- and macro-tribology for a Ti-MoS2 coating. Wear 274–275, 149–161 (2012)

    Article  Google Scholar 

  32. Singer, I.L., Dvorak, S.D., Wahl, K.J., Scharf, T.W.: Role of third bodies in friction and wear of protective coatings. J. Vac. Sci. Technol., A 21(5), S232–S240 (2003)

    Article  Google Scholar 

  33. Chromik, R.R., Strauss, H.W., Scharf, T.W.: Materials phenomena revealed by in situ tribometry. JOM 64(1), 35–43 (2012)

    Article  Google Scholar 

  34. Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sending indentation experiments. J. Mater. Res. 7(6), 1564–1586 (1992)

    Article  Google Scholar 

  35. Rigney, D.A.: Transfer, mixing, and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245(1), 1–9 (2000)

    Article  Google Scholar 

  36. Berthier, Y., Godet, M., Brendle, M.: Velocity accommodation in friction. Tribol. Trans. 32, 490–496 (1989)

    Article  Google Scholar 

  37. Wang, Y., Rainforth, W.M., Jones, H., Lieblich, M.: Dry wear behaviour and its relation to microstructure of novel 6092 aluminium alloy-Ni3Al powder metallurgy composite. Wear 251, 1421–1432 (2001)

    Article  Google Scholar 

  38. Rigney, D.A., Chen, L.H., Naylor, M.G.S., Rosenfield, A.R.: Wear processes in sliding systems. Wear 100, 195–219 (1984)

    Article  Google Scholar 

  39. Wahl, K.J., Chromik, R.R., Lee, G.Y.: Quantitative in situ measurement of transfer film thickness by a Newton‘s rings method. Wear 264, 731 (2008)

    Article  Google Scholar 

  40. Kim, H.-J., Emge, A., Karthikeyan, S., Rigney, D.A.: Effects of tribooxidation on sliding behavior of aluminum. Wear 259, 501–505 (2005)

    Article  Google Scholar 

  41. Rainforth, W.M.: Microstructural evolution at the worn surface: a comparison of metals and ceramics. Wear 245, 162–177 (2000)

    Article  Google Scholar 

  42. Li, J., Elmadagli, M., Gertsman, V.Y., Alpas, A.T.: FIB and TEM characterization of subsurfaces of an Al–Si alloy (A390) subjected to sliding wear. Mater. Sci. Eng., A 421, 317–327 (2006)

    Article  Google Scholar 

  43. Venkataraman, B., Sundararajan, G.: Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminium, Al-7075 alloy and Al-MMCs. Wear 245, 22–38 (2000)

    Article  Google Scholar 

  44. Farhat, Z.N., Ding, Y., Northwood, D.O., Alpas, A.T.: Effect of grain size on friction and wear of nanocrystalline aluminum. Mater. Sci. Eng., A 206, 302–313 (1996)

    Article  Google Scholar 

  45. Barnoush, A., Welsch, M.T., Vehoff, H.: Correlation between dislocation density and pop-in phenomena in aluminum studied by nanoindentation and electron channeling contrast imaging. Scripta Mater. 63, 465–468 (2010)

    Article  Google Scholar 

  46. Buckley, D.H.: Ceramic microstructure and adhesion. J. Vac. Sci. Technol. A3(3), 762 (1985)

    Article  Google Scholar 

  47. Pepper, S.V.: Shear strength of metal-sapphire contacts. J. Appl. Phys. 47, 801 (1976)

    Article  Google Scholar 

  48. Johnson, K.H., Pepper, S.V.: Molecular-orbital model for metal-sapphire interfacial strength. J. Appl. Phys. 53, 6634 (1982)

    Article  Google Scholar 

  49. Siegel, D.J., Hector Jr, L.G., Adams, J.B.: Adhesion, atomic structure, and bonding at the Al(111)/α-Al2O3(0001) interface: a first principles study. Phys. Rev. B: Condens. Matter. Mater. Phys. 65(8), 854151–8541519 (2002)

    Article  Google Scholar 

  50. Valiev, R.Z., Islamgaliev, R.K., Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater Sci. 45, 103–189 (2000)

    Article  Google Scholar 

  51. Apps, P.J., Bowen, J.R., Prangnell, P.B.: The effect of coarse second-phase particles on the rate of grain refinement during severe deformation processing. Acta Mater. 51, 2811–2822 (2003)

    Article  Google Scholar 

  52. Mahato, A., Verma, N., Jayaram, V., Biswas, S.K.: Severe wear of a near eutectic aluminium-silicon alloy. Acta Mater. 59, 6069–6082 (2011)

    Article  Google Scholar 

  53. Descartes, S., Desrayaud, C., Rauch, E.F.: Inhomogeneous microstructural evolution of pure iron during high-pressure torsion. Mater. Sci. Eng., A 528, 3666–3675 (2011)

    Article  Google Scholar 

  54. Gutierrez-Urrutia, I., Munoz-Morris, M.A., Morris, D.G.: Contribution of microstructural parameters to strengthening in an ultrafine-grained Al-7% Si alloy processed by severe deformation. Acta Mater. 55, 1319–1330 (2007)

    Article  Google Scholar 

  55. Gutierrez-Urrutia, I., Munoz-Morris, M.A., Puertas, I., Luis, C., Morris, D.G.: Influence of processing temperature and die angle on the grain microstructure produced by severe deformation of an Al-7% Si alloy. Mater. Sci. Eng., A 475, 268–278 (2008)

    Article  Google Scholar 

  56. Fleck, N.A., Muller, G.M., Hutchison, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  57. Perrin, C., Rainforth, W.M.: The effect of alumina fibre reinforcement on the wear of an Al–4.3% Cu alloy. Wear 181–183, 312–324 (1995)

    Google Scholar 

  58. Sannino, A.P., Rack, H.J.: Dry sliding wear of discontinuously reinforced aluminum composites: review and discussion. Wear 189, 1–19 (1995)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Canadian Foundation for Innovation (CFI) project No. 8246 for the cold-spray equipment, the CFI Leader’s Opportunity Fund project No. 13029 for the in situ tribometer and nanoindentation equipment, and the Natural Sciences and Engineering Research Council (NSERC) Discovery Grants Program for the operational funding of this project. JMS acknowledges partial financial support from the McGill Engineering Doctoral Award (MEDA) program. Thanks are also due to the CLYM (Center Lyonnais de Microscopie, http://clym.insa-lyon.fr) for the access to the FIB/SEM (Zeiss NVision 40) and to N. Blanchard, A. Descamps-Mandine, Th. Douillard, and B. Van De Moortèle for the technical help. CLYM is supported by CNRS, le Grand Lyon, and le Conseil Régional Rhône-Alpes (France).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Chromik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shockley, J.M., Descartes, S., Irissou, E. et al. Third Body Behavior During Dry Sliding of Cold-Sprayed Al-Al2O3 Composites: In Situ Tribometry and Microanalysis. Tribol Lett 54, 191–206 (2014). https://doi.org/10.1007/s11249-014-0326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-014-0326-z

Keywords

Navigation