Skip to main content
Log in

Experimental Investigation of Viscoelastic Rolling Contacts: A Comparison with Theory

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We present a detailed experimental investigation on viscoelastic rolling contacts. The tests focus on contact area, penetration and viscoelastic dissipation measurements between a nitrile rubber ball rolling on a glass disc. Each of the measured parameters is shown to be dependent on the rolling speed and normal load and has, therefore, been used to assess the main differences between viscoelastic and linear elastic rolling contacts. Experimental outcomes are compared with numerical predictions of the theory proposed by Carbone and Putignano (J Mech Phys Solid, 2013). A good agreement is found between experiments and theoretical predictions, thus demonstrating the validity of the numerical approach. This has important implications for modelling the behaviour of real viscoelastic materials, whose response is characterised by a wide distribution of relaxation times. The presented methodologies and results can be applied directly or are of relevance to a number of engineering components, such as tires and seals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. We observe that, in general, G(xv) parametrically depends on the thickness h of the layer by means of a geometric correction factor \(\Uptheta (|{\bf x}|/h)\), as shown in [1]. For an infinitely thick layer \((|{\bf x}|/h\rightarrow 0)\), i.e., for a viscoelastic half-space, the correction factor \(\Uptheta (|{\bf x}|/h)\) goes to 1 and G(xv) is strongly simplified. We also notice that the numerical implementation is also relatively simple if one exploits the Love’s solution for elastic materials [25], as observed in [32].

  2. Here, scatter is defined as σ/μ, i.e., the ratio between the standard deviation σ and the mean measured value μ.

References

  1. Carbone, G., Putignano, C.: A novel methodology to predict sliding/rolling friction in viscoelastic materials: theory and experiments. J. Mech. Phys. Solid. (2013). doi:10.1016/j.jmps.2013.03.005

  2. Bottiglione, F., Carbone, G., Mangialardi, L., Mantriota, G.: Leakage mechanism in flat seals. J. Appl. Phys. 106(10), 104902 (2009)

    Article  Google Scholar 

  3. O’Boy, D.J., Dowling, A.P.: Tyre/road interaction noise—a 3D viscoelastic multilayer model of a tyre belt. J. Sound Vib. 322(4–5), 829–850 (2009)

    Article  Google Scholar 

  4. Craiem, D., Magin, R.L.: Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys. Biol. 7, 013001 (2010)

    Google Scholar 

  5. Regeva, O., Vandebrilb, S., Zussmana, E., Clasenb, C.: The role of interfacial viscoelasticity in the stabilization of an electrospun jet. Polymer 51(12), 2611–2620 (2010)

    Article  Google Scholar 

  6. Tsujimotoa, T., Uyamaa, H., Kobayashib, S.: Synthesis of high-performance green nanocomposites from renewable natural oils. Polym. Degrad. Stab. 95(8), 1399–1405 (2010)

    Article  Google Scholar 

  7. Hunter, S.C.: The rolling contact of a rigid cylinder with a viscoelastic half space. Trans. ASME Ser. E. J. Appl. Mech. 28, 611–617 (1961)

    Article  CAS  Google Scholar 

  8. Harrass, M., Friedrich, K., Almajid, A.A.: Tribological behavior of selected engineering polymers under rolling contact. Tribol. Int. 43, 635–646 (2010)

    Article  CAS  Google Scholar 

  9. Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. Ser. A Math. Phys. 274-1356, 21–39 (1963)

    Article  Google Scholar 

  10. Persson, B.N.J.: Rolling friction for hard cylinder and sphere on viscoelastic solid. Eur. Phys. J. E 33, 327–333 (2010)

    Article  CAS  Google Scholar 

  11. Panek, C., Kalker, J.J.: Three-dimensional contact of a rigid roller traversing a viscoelastic half space. J. Inst. Math. Appl. 26, 299–313 (1980)

    Article  Google Scholar 

  12. Padovan, J., Paramadilok, O.: Transient and steady state viscoelastic rolling contact. Comput. Struct. 20, 545–553 (1984)

    Article  Google Scholar 

  13. Vollebregt, E.A.H.: User Guide for CONTACT, J.J. Kalker’s Variational Contact Model, Technical Report TR09-03, version 1.18

  14. Nackenhorst, U.: The ALE-formulation of bodies in rolling contact theoretical foundations andfinite element approach. Comput. Method Appl. M. 193, 4299–4322 (2004)

    Article  Google Scholar 

  15. Yoneyama, S., Gotoh, J., Takashi, M.: Experimental analysis of rolling contact stresses in a viscoelastic strip. Exp. Mech. 40(2), 203–210 (2000). doi:10.1007/BF02325047

    Google Scholar 

  16. Carbone, G., Lorenz, B., Persson, B.N.J., Wohlers, A.: Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. Eur. Phys. J. E. Soft Matter 29(3), 275–284 (2009)

    Article  CAS  Google Scholar 

  17. Persson, B.N.J.: Rubber friction: role of the flash temperature. J. Phys. Condens. Matter 18(32), 7789–7823 (2006)

    Article  CAS  Google Scholar 

  18. Goriacheva, G.: Contact problem of rolling of a viscoelastic cylinder on a base of the same material. J. Appl. Math. Mech. 37(5), 925–933 (1973). doi:10.1016/0021-8928(73)90017-8

    Google Scholar 

  19. Christensen, R.M.: Theory of Viscoelasticity. Academic Press, New York (1982)

    Google Scholar 

  20. Padovan, J.: Finite element analysis of steady and transiently moving/rolling nonlinear viscoelastic structure-I theory. Comput. Struct. 27(2), 249–257 (1987)

    Article  Google Scholar 

  21. Padovan, J., Kazempour, A., Tabaddor, F., Brockman, B.: Alternative formulations of rolling contact problems. Finite Elem. Anal. Des. 11, 275–284 (1992)

    Article  Google Scholar 

  22. Nasdala, L., Kaliske, M., Becker, A., Rothert, H.: An efficient viscoelastic formulation for steady-state rolling structures. Comput. Mech. 22, 395–403 (1998)

    Article  Google Scholar 

  23. Le Tallec, P., Rahler, C.: Numerical models of steady rolling for non-linear viscoelastic structures in finite deformations. Int. J. Numer. Meth. Eng. 37, 1159–1186 (1994)

    Article  Google Scholar 

  24. Halaunbrenner, J., Kubisz, A.: ASLE-ASME Lubrication Conference Paper No. 67-Lub-25 , Chicago (1967)

  25. Johnson, K.L.J.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  26. Krick, B.A., Vail, J.R., Persson, B.N.J., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol Lett. doi:10.1007/s11249-011-9870-y

  27. Lorenz, B., Persson, B.N.J., Dieluweit, S., Tada, T.: Rubber friction: comparison of theory with experiment. Eur. Phys. J. E. 34, 129 (2011). doi:10.1140/epje/i2011-11129-1

    Google Scholar 

  28. Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a dugdale model. J. Colloid Interf. Sci. 150, 1 (1992)

    Article  Google Scholar 

  29. Felhõs, D., Xul, D., Schlarb, A.K., Váradi, K., Goda, T.: Viscoelastic characterization of an EPDM rubber and finite element simulation of its dry rolling friction. Express Polym. Lett. 2(3), 157–164 (2008)

    Article  Google Scholar 

  30. Olaru, D.N., Stamate, C., Prisacaru, G.: Rolling friction in a micro tribosystem. Tribol. Lett. 35, 205–210 (2009)

    Article  Google Scholar 

  31. Ferry, J.D.: Viscoelastic Properties of Polymers. Wiley, New York (1980)

    Google Scholar 

  32. Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A new efficient numerical method for contact mechanics of rough surfaces. Int. J. Solid. Struct. 49(2), 338–343 (2012). doi:10.1016/j.ijsolstr.2011.10.009

    Article  Google Scholar 

  33. Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contact: a numerical investigation. J. Mech. Phys. Solid. 60(5), 973–982 (2012)

    Article  Google Scholar 

  34. Carbone, G., Mangialardi, L.: Analysis of adhesive contact of confined layers by using a Green’s function approach. J. Mech. Phys. Solid. 56(2), 684–706 (2008)

    Article  CAS  Google Scholar 

  35. Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E. Soft Matter 30(1), 65–74 (2009)

    Article  CAS  Google Scholar 

  36. Carbone, G., Mangialardi, L.: Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J. Mech. Phys. Solids 52(6), 1267–1287 (2004)

    Article  Google Scholar 

  37. Scaraggi, M., Putignano, C., Carbone, G.: Elastic contact of rough surfaces: a simple criterion to make 2D isotropic roughness equivalent to 1D one. Wear 297, 1–2, 5, 811–817 (2013)

    Google Scholar 

  38. Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: A multiscale analysis of elastic contacts and percolation threshold for numerically generated and real rough surfaces. Tribol. Int. 64, 148–154 (2013). doi:10.1016/j.triboint.2013.03.010

    Article  Google Scholar 

  39. de Vicente, J., Stokes, J.R., Spikes, H.A.: Rolling and sliding friction in compliant, lubricated contact. Proc. IMechE, Part J: J. Eng. Tribol. 220, 55–63 (2006)

    Google Scholar 

  40. Williams, M.L., Landel, R.F., Ferry, J.D.: The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701 (1955)

    Article  CAS  Google Scholar 

  41. Michael, K.: Advanced Topics in Characterization of Composites. Trafford Publishing, Bloomington, IN (2004)

    Google Scholar 

Download references

Acknowledgments

CP and GC thank the support of the Italian Ministry of Education, University and Research, within the Projects PON01_02238 and PON02_00576_3333604.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Putignano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putignano, C., Reddyhoff, T., Carbone, G. et al. Experimental Investigation of Viscoelastic Rolling Contacts: A Comparison with Theory. Tribol Lett 51, 105–113 (2013). https://doi.org/10.1007/s11249-013-0151-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-013-0151-9

Keywords

Navigation