Skip to main content
Log in

Tribological Properties of Nanodiamond-Epoxy Composites

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Owing to its superior mechanical properties, nanodiamond (ND) holds great potential to improve tribological characteristics of composites. In this study, we report on the wear and dry friction of epoxy-ND composites prepared from as-received and aminated ND across the length scale range from macro to nano. Comparison of macroscale, microscale, and nanoscale frictional behavior shows that ND is highly effective in improving the wear resistance and friction coefficients of polymer matrices across the different length scales. Although with both types of ND wear resistance and friction coefficients of epoxy-ND composites were significantly improved, aminated ND outperformed as-received ND, which we account to the formation of a strong interface between aminated ND and the epoxy matrix. This study also shows that agglomerates within epoxy-ND composites containing 25 vol.% ND were able to wear an alumina counterbody, indicating very high hardness and Young’s modulus of these agglomerates, that can eventually replace micron sized diamonds currently used in industrial abrasive applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Klein, J.: Shear, friction, and lubrication forces between polymer-bearing surfaces. Annu. Rev. Mater. Sci. 26, 581–612 (1996)

    Article  CAS  Google Scholar 

  2. Lancaster, J.K.: Polymer-based bearing materials: the role of fillers and fibre reinforcement. Tribology 5, 249–255 (1972)

    Article  CAS  Google Scholar 

  3. Rehbein, P., Wallaschek, J.: Friction and wear behaviour of polymer/steel and alumina/alumina under high-frequency fretting conditions. Wear 216, 97–105 (1998)

    Article  CAS  Google Scholar 

  4. Widmer, M.R., Heuberger, M., Vörös, J., Spencer, N.D.: Influence of polymer surface chemistry on frictional properties under protein-lubrication conditions: implications for hip-implant design. Tribol. Lett. 10, 111–116 (2001)

    Article  CAS  Google Scholar 

  5. Friedrich, K., Zhang, Z., Schlarb, A.K.: Effects of various fillers on the sliding wear of polymer composites. Compos. Sci. Technol. 65, 2329–2343 (2005)

    Article  CAS  Google Scholar 

  6. Donnet, C., Erdemir, A.: Historical developments and new trends in tribological and solid lubricant coatings. Surf. Coat. Technol. 180, 76–84 (2004)

    Article  Google Scholar 

  7. Chang, L., Zhang, Z., Ye, L., Friedrich, K.: Tribological properties of high temperature resistant polymer composites with fine particles. Tribol. Int. 40, 1170–1178 (2007)

    Article  CAS  Google Scholar 

  8. Chang, L., Zhang, Z., Breidt, C., Friedrich, K.: Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear 258, 141–148 (2005)

    Article  CAS  Google Scholar 

  9. Zhang, Z., Breidt, C., Chang, L., Haupert, F., Friedrich, K.: Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2. Compos. A Appl. Sci. Manuf. 35, 1385–1392 (2004)

    Article  Google Scholar 

  10. Burris, D.L., Zhao, S., Duncan, R., Lowitz, J., Perry, S.S., Schadler, L.S., Sawyer, W.G.: A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 267, 653–660 (2009)

    Article  CAS  Google Scholar 

  11. Robertson, J.: Properties of diamond-like carbon. Surf. Coat. Technol. 50, 185–203 (1992)

    Article  CAS  Google Scholar 

  12. Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012)

    Article  CAS  Google Scholar 

  13. Schrand, A.M., Johnson, J., Dai, L., Hussain, S.M., Schlager, J.J., Zhu, L., Hong, Y., Ōsawa, E.: Cytotoxicity and genotoxicity of carbon nanomaterials. In: Webster, T.J. (ed.) Safety of Nanoparticles: From Manufacturing to Clinical Applications, pp. 1–29. Springer, New York (2009)

    Google Scholar 

  14. Osswald, S., Yushin, G., Mochalin, V., Kucheyev, S.O., Gogotsi, Y.: Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J. Am. Chem. Soc. 128, 11635–11642 (2006)

    Article  CAS  Google Scholar 

  15. Khabashesku, V.N., Margrave, J.L., Barrera, E.V.: Functionalized carbon nanotubes and nanodiamonds for engineering and biomedical applications. Diam. Relat. Mater. 14, 859–866 (2005)

    Article  CAS  Google Scholar 

  16. Lam, R., Chen, M., Pierstorff, E., Huang, H., Osawa, E., Ho, D.: Nanodiamond-embedded microfilm devices for localized chemotherapeutic elution. ACS Nano 2, 2095–2102 (2008)

    Article  CAS  Google Scholar 

  17. Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)

    Article  CAS  Google Scholar 

  18. Zhang, Q., Mochalin, V.N., Neitzel, I., Knoke, I.Y., Han, J., Klug, C.A., Zhou, J.G., Lelkes, P.I., Gogotsi, Y.: Fluorescent PLLA-nanodiamond composites for bone tissue engineering. Biomaterials 32, 87–94 (2011)

    Article  Google Scholar 

  19. Behler, K.D., Stravato, A., Mochalin, V., Korneva, G., Yushin, G., Gogotsi, Y.: Nanodiamond-polymer composite fibers and coatings. ACS Nano 3, 363–369 (2009)

    Article  CAS  Google Scholar 

  20. Stravato, A., Knight, R., Mochalin, V., Picardi, S.C.: HVOF-sprayed nylon-11+ nanodiamond composite coatings: production & characterization. J. Therm. Spray Technol. 17, 812–817 (2008)

    Article  CAS  Google Scholar 

  21. Shenderova, O., Tyler, T., Cunningham, G., Ray, M., Walsh, J., Casulli, M., Hens, S., McGuire, G., Kuznetsov, V., Lipa, S.: Nanodiamond and onion-like carbon polymer nanocomposites. Diam. Relat. Mater. 16, 1213–1217 (2007)

    Article  CAS  Google Scholar 

  22. Mochalin, V.N., Neitzel, I., Etzold, B.J.M., Peterson, A., Palmese, G., Gogotsi, Y.: Covalent incorporation of aminated nanodiamond into an epoxy polymer network. ACS Nano 5, 7494–7502 (2011)

    Article  CAS  Google Scholar 

  23. Grill, A.: Tribology of diamond like carbon and related materials: an updated review. Surf. Coat. Technol. 94, 507–513 (1997)

    Article  Google Scholar 

  24. Konicek, A., Grierson, D., Gilbert, P., Sawyer, W., Sumant, A., Carpick, R.: Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100, 235502 (2008)

    Article  CAS  Google Scholar 

  25. Lee, J.-Y., Lim, D.-S.: Tribological behavior of PTFE film with nanodiamond. Surf. Coat. Technol. 188, 534–538 (2004)

    Article  Google Scholar 

  26. Voznyakovskii, A., Ginzburg, B., Rashidov, D., Tochil’nikov, D., Tuichiev, S.: Structure, mechanical, and tribological characteristics of polyurethane modified with nanodiamonds. Polym. Sci. Ser. A 52, 1044–1050 (2010)

    Article  Google Scholar 

  27. Neitzel, I., Mochalin, V., Knoke, I., Palmese, G.R., Gogotsi, Y.: Mechanical properties of epoxy composites with high contents of nanodiamond. Compos. Sci. Technol. 71, 710–716 (2011)

    Article  CAS  Google Scholar 

  28. Mochalin, V., Osswald, S., Gogotsi, Y.: Contribution of functional groups to the Raman spectrum of nanodiamond powders. Chem. Mater. 21, 273–279 (2009)

    Article  CAS  Google Scholar 

  29. Palmese, G.R., McCullough, R.L.: Effect of epoxy-amine stoichiometry on cured resin material properties. J. Appl. Polym. Sci. 46, 1863–1873 (1992)

    Article  CAS  Google Scholar 

  30. Bershtein, V., Karabanova, L., Sukhanova, T., Yakushev, P., Egorova, L., Lutsyk, E., Svyatyna, A., Vylegzhanina, M.: Peculiar dynamics and elastic properties of hybrid semi-interpenetrating polymer network–3-D diamond nanocomposites. Polymer 49, 836–842 (2008)

    Article  CAS  Google Scholar 

  31. Sader, J.E., Chon, J.W.M., Mulvaney, P.: Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999)

    Article  CAS  Google Scholar 

  32. Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298–3306 (1996)

    Article  CAS  Google Scholar 

  33. Varenberg, M., Etsion, I., Halperin, G.: An improved wedge calibration method for lateral force in atomic force microscopy. Rev. Sci. Instrum. 74, 3362–3367 (2003)

    Article  CAS  Google Scholar 

  34. Shen, Z., Johnsson, M., Zhao, Z., Nygren, M.: Spark plasma sintering of alumina. J. Am. Ceram. Soc. 85, 1921–1927 (2002)

    Article  CAS  Google Scholar 

  35. Lim, D.P., Lee, J.Y., Lim, D.S., Ahn, S.G., Lyo, I.W.: Effect of reinforcement particle size on the tribological properties of nano-diamond filled polytetrafluoroethylene based coating. J. Nanosci. Nanotechnol. 9, 4197–4201 (2009)

    Article  CAS  Google Scholar 

  36. Carroll, B., Gogotsi, Y., Kovalchenko, A., Erdemir, A., McNallan, M.J.: Effect of humidity on the tribological properties of carbide-derived carbon (CDC) films on silicon carbide. Tribol. Lett. 15, 51–55 (2003)

    Article  CAS  Google Scholar 

  37. Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82, 48–56 (1996)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Centralized Research Facilities at Drexel University provided access to the NanoIndenter XP and optical light microscope used in this work. AFM measurements were performed at the Nano-Bio Interface Center at the University of Pennsylvania. Macroscopic tribological properties were measured at the Argonne National Laboratory supported by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, under Contract No. DE-AC02-06CH11357. The work at Drexel University was supported by NSF grant CMMI-0927963.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Gogotsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neitzel, I., Mochalin, V., Bares, J. et al. Tribological Properties of Nanodiamond-Epoxy Composites. Tribol Lett 47, 195–202 (2012). https://doi.org/10.1007/s11249-012-9978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9978-8

Keywords

Profiles

  1. Y. Gogotsi