Skip to main content
Log in

Material Removal Mechanism of Copper CMP from a Chemical–Mechanical Synergy Perspective

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The material removal in chemical–mechanical planarization/polishing (CMP) of copper involves both chemical and mechanical effects. The roles of chemical corrosion, abrasive wear, and their synergistic effects on the material removal mechanism were studied by electrochemical analysis and nano-scratching method using atom force microscopy, respectively. Combining with the results of CMP experiments, dominant factors (chemistry and mechanics) in slurries within the range of pH 3.0–10.0 were assessed. Consequently, a removal mechanism map of copper CMP depending on pH values was constructed. In the alkaline slurry, the wear–corrosion effect predominated in the material removal at pH 8.0 and 9.0; while the copper removal mechanism changed to corrosion–wear action in the acidic slurry from pH 4.0 to 6.0, and good surface quality was also obtained. The results and the strategies provide thorough understanding of the material removal mechanism and further optimization of the CMP process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Berdyyeva, T.K., Emery, S.B., Sokolov, I.Y.: In situ AFM study of surface layer removal during copper CMP. Electrochem. Solid State Lett. 6, G91–G94 (2003)

    Article  CAS  Google Scholar 

  2. Zantye, P.B., Kumar, A., Sikder, A.K.: Chemical mechanical planarization for microelectronics applications. Mater. Sci. Eng. R 45, 89–220 (2004)

    Article  Google Scholar 

  3. Nanz, G., Camilletti, L.E.: Modeling of chemical-mechanical polishing—a review. IEEE Trans. Semicond. Manuf. 8, 382–389 (1995)

    Article  Google Scholar 

  4. Singh, R.K., Bajaj, R.: Advances in chemical-mechanical planarization. MRS Bull. 27, 743–751 (2002)

    Article  CAS  Google Scholar 

  5. Krishnan, M., Nalaskowski, J.W.: Chemical mechanical planarization: slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010)

    Article  CAS  Google Scholar 

  6. Preston, F.W.: The theory and design of plate glass polishing machines. J. Soc. Glass Technol. 11, 214–256 (1927)

    CAS  Google Scholar 

  7. Paul, E., Kaufman, F., Brusic, V., Zhang, J., Sun, F., Vacassy, R.: A model of copper CMP. J. Electrochem. Soc. 152, G322–G328 (2005)

    Article  CAS  Google Scholar 

  8. Cook, L.M.: Chemical processes in glass polishing. J. Non-Cryst. Solids 120, 152–171 (1990)

    Article  CAS  Google Scholar 

  9. Kaufman, F.B., Thompson, D.B., Broadie, R.E., Jaso, M.A., Guthrie, W.L., Pearson, D.J., Small, M.B.: Chemical-mechanical polishing for fabricating patterned W metal features as chip interconnects. J. Electrochem. Soc. 138, 3460–3465 (1991)

    Article  CAS  Google Scholar 

  10. Zhao, Y.W., Chang, L., Kim, S.H.: A mathematical model for chemical- mechanical polishing based on formation and removal of weakly bonded molecular species. Wear 254, 332–339 (2003)

    Article  CAS  Google Scholar 

  11. Luo, J.F., Dornfeld, D.A.: Material removal mechanism in chemical mechanical polishing: theory and modeling. IEEE Trans. Semicond. Manuf. 14, 112–133 (2001)

    Article  Google Scholar 

  12. Fu, G.H., Chandra, A., Guha, S., Subhash, G.: A plasticity-based model of material removal in chemical-mechanical polishing (CMP). IEEE Trans. Semicond. Manuf. 14, 406–417 (2001)

    Article  Google Scholar 

  13. Qin, K., Moudgil, B., Park, C.W.: A chemical mechanical polishing model incorporating both the chemical and mechanical effects. Thin Solid Films 446, 277–286 (2004)

    Article  CAS  Google Scholar 

  14. Choi, S., Tripathi, S., Doyle, F.M., Dornfeld, D.A.: Integrated tribo-chemical modeling of copper CMP. Mater. Res. Soc. Symp. Proc. 1157, E02–E03 (2009)

    Google Scholar 

  15. Choi, S., Tripathi, S., Dornfeld, D.A., Doyle, F.M.: Copper CMP modeling: millisecond scale adsorption kinetics of BTA in glycine-containing solutions at pH 4. J. Electrochem. Soc. 157, H1153–H1159 (2010)

    Article  CAS  Google Scholar 

  16. Du, T., Tamboli, D., Desai, V., Seal, S.: Mechanism of copper removal during CMP in acidic H2O2 slurry. J. Electrochem. Soc. 151, G230–G235 (2004)

    Article  CAS  Google Scholar 

  17. Singh, R.K., Lee, S.M., Choi, K.S., Basim, G.B., Choi, W.S., Chen, Z., Moudgil, B.M.: Fundamentals of slurry design for CMP of metal and dielectric materials. MRS Bull. 27, 752–760 (2002)

    Article  CAS  Google Scholar 

  18. Lin, J.F., Chern, J.D., Chang, Y.H., Kuo, P.L., Tsai, M.S.: Analysis of the tribological mechanisms arising in the chemical mechanical polishing of copper-film wafers. J. Tribol.-Trans. ASME 126, 185–199 (2004)

    Article  CAS  Google Scholar 

  19. Che, W., Bastawros, A., Abhijit, C.: Synergy between chemical dissolution and mechanical abrasion during chemical mechanical polishing of copper. Mater. Res. Soc. Symp. Proc. 867, 275–280 (2005)

    CAS  Google Scholar 

  20. Ziomek-Moroz, M., Miller, A., Hawk, J., Cadien, K., Li, D.Y.: An overview of corrosion–wear interaction for planarizing metallic thin films. Wear 255, 869–874 (2003)

    Article  CAS  Google Scholar 

  21. Watson, S.W., Friedersdorf, F.J., Madsen, B.W., Cramer, S.D.: Methods of measuring wear corrosion synergism. Wear 181, 476–484 (1995)

    Google Scholar 

  22. Choi, W.: Study of interfacial interaction during chemical mechanical polishing (CMP) of dielectric silicon dioxide. Ph.D. Thesis, University of Florida, Gainesville (2003)

  23. Xu, G., Liang, H., Zhao, J., Li, Y.: Investigation of copper removal mechanisms during CMP. J. Electrochem. Soc. 151, G688–G692 (2004)

    Article  CAS  Google Scholar 

  24. Pandija, S., Roy, D., Babu, S.V.: Chemical mechanical planarization of copper using abrasive-free solutions of oxalic acid and hydrogen peroxide. Mater. Chem. Phys. 102, 144–151 (2007)

    Article  CAS  Google Scholar 

  25. Kim, Y.J., Kwon, O.J., Kang, M.C., Kim, J.J.: Effects of the functional groups of complexing agents and Cu oxide formation on Cu dissolution behaviors in Cu CMP Process. J. Electrochem. Soc. 158, H190–H196 (2011)

    Article  CAS  Google Scholar 

  26. Gorantla, V.R.K., Goia, D., Matijevic, E., Babu, S.V.: Role of amine and carboxyl functional groups of complexing agents in slurries for chemical mechanical polishing of copper. J. Electrochem. Soc. 152, G912–G916 (2005)

    Article  CAS  Google Scholar 

  27. Aksu, S., Doyle, F.M.: Electrochemistry of copper in aqueous glycine solutions. J. Electrochem. Soc. 148, B51–B57 (2001)

    Article  CAS  Google Scholar 

  28. Hariharaputhiran, M., Zhang, J., Ramarajan, S., Keleher, J.J., Li, Y.Z., Babu, S.V.: Hydroxyl radical formation in H2O2-amino acid mixtures and chemical mechanical polishing of copper. J. Electrochem. Soc. 147, 3820–3826 (2000)

    Article  CAS  Google Scholar 

  29. Lu, J., Garland, J.E., Pettit, C.M., Babu, S.V., Roy, D.: Relative roles of H2O2 and glycine in CMP of copper studied with impedance spectroscopy. J. Electrochem. Soc. 151, G717–G722 (2004)

    Article  CAS  Google Scholar 

  30. Liao, C., Guo, D., Wen, S., Luo, J.: Effects of chemical additives of CMP slurry on surface mechanical characteristics and material removal of copper. Tribol. Lett. 45, 309–317 (2012)

    Article  CAS  Google Scholar 

  31. Jindal, A., Babu, S.V.: Effect of pH on CMP of copper and tantalum. J. Electrochem. Soc. 151, G709–G716 (2004)

    Article  CAS  Google Scholar 

  32. Antonijevic, M.M., Petrovic, M.B.: Copper corrosion inhibitors: a review. Int. J. Electrochem. Sci. 3, 1–28 (2008)

    CAS  Google Scholar 

  33. Tamilmani, S., Huang, W., Raghavan, S., Small, R.: Potential-pH diagrams of interest to chemical mechanical planarization of copper. J. Electrochem. Soc. 149, G638–G642 (2002)

    Article  CAS  Google Scholar 

  34. Ihnfeldt, R., Talbot, J.B.: Effect of CMP slurry chemistry on copper nanohardness. J. Electrochem. Soc. 155, H412–H420 (2008)

    Article  CAS  Google Scholar 

  35. Tripathi, S., Doyle, F.M., Dornfeld, D.A.: Fundamental mechanisms of copper CMP—passivation kinetics of copper in CMP slurry constituents. Mater. Res. Soc. Symp. Proc., 1157 E06–02 (2009)

    Google Scholar 

  36. Lee, S.M., Choi, W., Craciun, V., Singh, R.K.: Transient electrochemical measurements during copper chemical mechanical polishing. In: Boning, D. (ed.) Materials Research Society Symposium Proceedings, pp. 127–132. Materials research society, Warrendale (2003)

  37. Li, J., Lu, X., He, Y., Luo, J.: Modeling the chemical-mechanical synergy during copper CMP. J. Electrochem. Soc. 158, H197–H202 (2011)

    Article  CAS  Google Scholar 

  38. Di Vece, M., Kelly, J.J.: Electrochemical study of hydrogen diffusion in yttrium hydride switchable mirrors. J. Alloy. Compd. 356, 156–159 (2003)

    Article  Google Scholar 

  39. Sulyma, C.M., Goonetilleke, P.C., Roy, D.: Analysis of current transients for voltage pulse-modulated surface processing: application to anodic electro-dissolution of copper for electrochemical mechanical planarization. J. Mater. Process. Technol. 209, 1189–1198 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would greatly appreciate the financial support of the National Science Fund for Distinguished Young Scholars (50825501), Science Fund for Creative Research Groups (51021064), and the financial support of National Science and Technology Major Project (2008ZX02104-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhong Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Liu, Y., Lu, X. et al. Material Removal Mechanism of Copper CMP from a Chemical–Mechanical Synergy Perspective. Tribol Lett 49, 11–19 (2013). https://doi.org/10.1007/s11249-012-0037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0037-2

Keywords

Navigation