Skip to main content
Log in

A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings

  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The binary system of vanadium and nitrogen offers promising phases in order to enhance the tribological properties of common hard coatings, owing to their ability to form lubricious oxides, often also referred to as Magnéli phases, at elevated temperatures. The aim of this work is to characterize VN coatings prepared by reactive unbalanced magnetron sputtering, and to verify the new concept of solid/liquid oxide lubrication. Oxidation of the coatings and possible melting of the oxides were investigated by dynamic Thermo-Gravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) up to 900 °C in air. On heating the coating samples, exothermal reactions appeared during the DSC measurements indicating oxidation in the temperature range of 500–650 °C. Subsequently, endothermal melting reactions were observed between 650 and 850 °C. To investigate the effect of oxide formation and melting, dry sliding experiments against alumina and austenitic stainless steel balls were performed using a ball-on-disc tribometer in the temperature range between 25 °C and 700 °C. For all coatings evaluated, a significant decrease of the friction coefficient at temperatures above 500 °C was observed compared to room temperature. Additionally, oxide phases were identified by X-ray Diffraction (XRD) after DSC and tribometer testing. Finally, it can be concluded that the lubricious oxide concept should strongly contribute to the reduction of friction for future machining applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. PalDey and S. C. Deevi, Mat. Sci. Eng. A 342 (2003) 58.

    Google Scholar 

  2. S. Hogmark, S. Jacobson and M. Larsson, Wear 246 (2000) 20.

    Google Scholar 

  3. H. A. Jehn, Surf. Coat. Technol. 131 (2000) 433.

    Google Scholar 

  4. V. Derflinger, H. Bra¨ ndle and H. Zimmermann, Surf. Coat. Technol. 113 (1999) 286.

    Google Scholar 

  5. C. Mitterer, F. Holler, F. U¨ stel and D. Heim, Surf. Coat. Technol. 125 (2000) 233.

    Google Scholar 

  6. D. G. Teer, Wear 251 (2001) 1068.

    Google Scholar 

  7. J. M. Carrapichano, J. R. Gomes and R. F. Silva, Wear 253 (2002) 1070.

    Google Scholar 

  8. B. Navinsek, P. Panjan, M. Cekada and D. T. Quinto, Surf. Coat. Technol. 154 (2002) 194.

    Google Scholar 

  9. M. Stoiber, E. Badisch, C. Lugmair and C. Mitterer, Surf. Coat. Technol. 163–164 (2003) 451.

    Google Scholar 

  10. K. Holmberg and A. Matthews, Coatings Tribology—Properties, Techniques and Applications in Surface Engineering. Elsevier Tribology Series 28 (Elsevier, Amsterdam, 1994).

    Google Scholar 

  11. O. Storz, H. Gasthuber and M. Woydt, Suf. Coat. Technol. 140 (2001) 76.

    Google Scholar 

  12. A. Magne´li, Acta Crystallogr. 6 (1953) 495.

    Google Scholar 

  13. E. Lugscheider, S. Ba¨ rwulf and C. Barimani, Surf. Coat. Technol. 120–121 (1999) 458.

    Google Scholar 

  14. A. Erdemir, Tribol. Lett. 8 (2000), 97

    Google Scholar 

  15. M. Woydt, A. Skopp, I. Do¨ rfel and K. Witke, Wear 218 (1998) 84.

    Google Scholar 

  16. P. H. Mayrhofer, P. E. Hovsepian, C. Mitterer and W.-D. Mu¨ nz, Surf. Coat. Technol. 177–178 (2004) 341.

    Google Scholar 

  17. P. Losbichler and C. Mitterer, Surf. Coat. Technol. 97 (1997) 568.

    Google Scholar 

  18. P. Losbichler, C. Mitterer, P. N. Gibson, W. Gissler, F. Hofer and P. Warbichler, Surf. Coat. Technol. 94/95 (1997) 297.

    Google Scholar 

  19. A. Brenner and S. Senderoff, J. Res. 42(2) (1949) 105.

    Google Scholar 

  20. J. D. Wilcock, and D. S. Campbell, Thin Solid Films 3 (1969) 3.

    Google Scholar 

  21. P. H. Mayrhofer and C. Mitterer, Surf. Coat. Technol. 133–134 (2000) 131.

    Google Scholar 

  22. B. D. Cullity, Elements of X-ray Diffraction (Addison-Wesley, Reading, Massachusetts, 1967).

    Google Scholar 

  23. E. Badisch, C. Mitterer, P. H. Mayrhofer, G. Mori, R. J. Bakker, J. Brenner and H. Sto¨ ri, Thin Solid Films, 460 (2004) 125.

    Google Scholar 

  24. E. Badisch, G. A. Fontalvo, M. Stoiber and C. Mitterer, Surf. Coat, Technol. 163–164 (2003) 585.

    Google Scholar 

  25. E. Badisch and C. Mitterer, in: Proc. 10th Nordic Symposium on Tribology, KTH, Stockholm, 2002

    Google Scholar 

  26. P. H. Mayrhofer, G. Tischler and C. Mitterer, Surf. Coat. Technol. 142–144 (2001) 78.

    Google Scholar 

  27. W. Gulbinski, T. Suszko, W. Sienicki and B. Warcholinski, Wear 254 (2003) 129.

    Google Scholar 

  28. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd ed. (Butterworth-Heinemann, Oxford, 1997).

    Google Scholar 

  29. Y. Ningyi, L. Jinuha and L. Chenglu, App. Surf. Sci. 191 (2002)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gassner, G., Mayrhofer, P., Kutschej, K. et al. A New Low Friction Concept for High Temperatures: Lubricious Oxide Formation on Sputtered VN Coatings. Tribology Letters 17, 751–756 (2004). https://doi.org/10.1007/s11249-004-8083-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-004-8083-z

Navigation