Skip to main content

Advertisement

Log in

Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Anopheline mosquitoes are major vectors of malaria parasites. When the gametocytes of the malaria parasite are transferred from a vertebrate to mosquitoes, they differentiate into gametes, and are fertilized in the midguts of mosquitoes. Xanthurenic acid (XA), a waste product of the ommochrome synthesis pathway, has been shown to induce exflagellation during microgametogenesis in vitro; however, it currently remains unclear whether endogenous XA affects the infectivity of anopheline mosquitoes to malaria parasites in vivo due to the lack of appropriate experimental systems such as a XA-deficient line. In the present study, we produced a XA-deficient line in Anopheles stephensi using transcription activator-like effector nuclease (TALEN)-mediated gene targeting (knockout) of the kynurenine 3-monooxygenase (kmo) gene, which encodes an enzyme that participates in the ommochrome synthesis pathway. The knockout of kmo resulted in the absence of XA, and oocyst formation was inhibited in the midguts of these XA-deficient mosquitoes, which, in turn, reduced sporozoite numbers in their salivary glands. These results suggest that endogenous XA stimulates exflagellation, and enhances the infectivity of anopheline mosquitoes to malaria parasites in vivo. The XA-deficient line of the anopheline mosquito provides a useful system for analyzing and understanding the associated factors of malaria gametogenesis in the mosquito midgut.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arai M, Billker O, Morris HR, Panico M, Delcroix M, Dixon D, Ley SV, Sinden RE (2001) Both mosquito-derived xanthurenic acid and a host blood-derived factor regulate gametogenesis of Plasmodium in the midgut of the mosquito. Mol Biochem Parasitol 116:17–24

    Article  CAS  PubMed  Google Scholar 

  • Aryan A, Anderson MA, Myles KM, Adelman ZN (2013) TALEN-based gene disruption in the dengue vector Aedes aegypti. PLoS ONE 8:e60082. https://doi.org/10.1371/journal.pone.0060082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beerntsen BT, Li J (2006) Plasmodium development in white-eye (kh w) and transformed strains (kh 43) of Aedes aegypti (Diptera: Culicidae). J Med Entomol 43:318–322

    CAS  PubMed  Google Scholar 

  • Bhalla SC (1968) White eye, a new sex-linked mutant of Aedes aegypti. Mosq News 28:380–385

    CAS  Google Scholar 

  • Bhattacharyya MK, Kumar N (2001) Effect of xanthurenic acid on infectivity of Plasmodium falciparum to Anopheles stephensi. Int J Parasitol 31:1129–1133

    Article  CAS  PubMed  Google Scholar 

  • Billingsley PF, Medley GF, Charlwood D, Sinden RE (1994) Relationship between prevalence and intensity of Plasmodium falciparum infection in natural populations of Anopheles mosquitoes. Am J Trop Med Hyg 51:260–270

    Article  CAS  PubMed  Google Scholar 

  • Billker O, Shaw MK, Margos G, Sinden RE (1997) The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitology 115:1–7

    Article  PubMed  Google Scholar 

  • Billker O, Lindo V, Panico M, Etienne AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR (1998) Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392:289–292. https://doi.org/10.1038/32667

    Article  CAS  PubMed  Google Scholar 

  • Billker O, Miller AJ, Sinden RE (2000) Determination of mosquito bloodmeal pH in situ by ion-selective microelectrode measurement: implications for the regulation of malarial gametogenesis. Parasitology 120:547–551

    Article  CAS  PubMed  Google Scholar 

  • Billker O, Dechamps S, Tewari R, Wenig G, Franke-Fayard B, Brinkmann V (2004) Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117:503–514

    Article  CAS  PubMed  Google Scholar 

  • Brochet M, Collins MO, Smith TK, Thompson E, Sebastian S, Volkmann K, Schwach F, Chappell L, Gomes AR, Berriman M, Rayner JC, Baker DA, Choudhary J, Billker O (2014) Phosphoinositide metabolism links cGMP-dependent protein kinase G to essential Ca(2)(+) signals at key decision points in the life cycle of malaria parasites. PLoS Biol 12:e1001806. https://doi.org/10.1371/journal.pbio.1001806

    Article  PubMed  PubMed Central  Google Scholar 

  • Catteruccia F, Nolan T, Loukeris TG, Blass C, Savakis C, Kafatos FC, Crisanti A (2000) Stable germline transformation of the malaria mosquito Anopheles stephensi. Nature 405:959–962. https://doi.org/10.1038/35016096

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF (2011) Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucl Acids Res 39:e82. https://doi.org/10.1093/nar/gkr218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements A (1999) The biology of mosquitoes. Sensory reception and behaviour, vol 2. CABI, Wallinford

    Google Scholar 

  • Cornel AJ, Benedict MQ, Rafferty CS, Howells AJ, Collins FH (1997) Transient expression of the Drosophila melanogaster cinnabar gene rescues eye color in the white eye (WE) strain of Aedes aegypti. Insect Biochem Mol Biol 27:993–997

    Article  CAS  PubMed  Google Scholar 

  • Da DF, Churcher TS, Yerbanga RS, Yameogo B, Sangare I, Ouedraogo JB, Sinden RE, Blagborough AM, Cohuet A (2015) Experimental study of the relationship between Plasmodium gametocyte density and infection success in mosquitoes; implications for the evaluation of malaria transmission-reducing interventions. Exp Parasitol 149:74–83. https://doi.org/10.1016/j.exppara.2014.12.010

    Article  PubMed  Google Scholar 

  • Gantz VM, Jasinskiene N, Tatarenkova O, Fazekas A, Macias VM, Bier E, James AA (2015) Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi. Proc Natl Acad Sci USA 112:E6736–6743. https://doi.org/10.1073/pnas.1521077112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia GE, Wirtz RA, Barr JR, Woolfitt A, Rosenberg R (1998) Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. J Biol Chem 273:12003–12005

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Edwards MJ, Jacobs-Lorena M (2000) The journey of the malaria parasite in the mosquito: hopes for the new century. Parasitol Today 16:196–201

    Article  CAS  PubMed  Google Scholar 

  • Han Q, Calvo E, Marinotti O, Fang J, Rizzi M, James AA, Li J (2003) Analysis of the wild-type and mutant genes encoding the enzyme kynurenine monooxygenase of the yellow fever mosquito, Aedes aegypti. Insect Mol Biol 12:483–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatakeyama M, Yatomi J, Sumitani M, Takasu Y, Sekine K, Niimi T, Sezutsu H (2016) Knockout of a transgene by transcription activator-like effector nucleases (TALENs) in the sawfly, Athalia rosae (Hymenoptera) and the ladybird beetle, Harmonia axyridis (Coleoptera). Insect Mol Biol 25:24–31. https://doi.org/10.1111/imb.12195

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Wang J, Yoshida S, Ishii A, Matsuoka H (2001) Characterization and identification of exflagellation-inducing factor in the salivary gland of Anopheles stephensi (Diptera: Culicidae). Biochem Biophys Res Commun 287:859–864. https://doi.org/10.1006/bbrc.2001.5675

    Article  CAS  PubMed  Google Scholar 

  • Hirai M, Kiuchi M, Wang J, Ishii A, Matsuoka H (2002) cDNA cloning, functional expression and characterization of kynurenine 3-hydroxylase of Anopheles stephensi (Diptera: Culicidae). Insect Mol Biol 11:497–504

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li G (1997) Transamination of 3-hydroxykynurenine to produce xanthurenic acid: a major branch pathway of tryptophan metabolism in the mosquito, Aedes aegypti, during larval development. Insect Biochem Mol Biol 27:859–867

    Article  CAS  PubMed  Google Scholar 

  • McRobert L, Taylor CJ, Deng W, Fivelman QL, Cummings RM, Polley SD, Billker O, Baker DA (2008) Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase. PLoS Biol 6:e139. https://doi.org/10.1371/journal.pbio.0060139

    Article  PubMed  PubMed Central  Google Scholar 

  • Muhia DK, Swales CA, Deng W, Kelly JM, Baker DA (2001) The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum. Mol Microbiol 42:553–560

    Article  CAS  PubMed  Google Scholar 

  • Nijhout MM (1979) Plasmodium gallinaceum: exflagellation stimulated by a mosquito factor. Exp Parasitol 48:75–80

    Article  CAS  PubMed  Google Scholar 

  • Nijhout MM, Carter R (1978) Gamete development in malaria parasites: bicarbonate-dependent stimulation by pH in vitro. Parasitology 76:39–53

    Article  CAS  PubMed  Google Scholar 

  • Sebastian S, Brochet M, Collins MO, Schwach F, Jones ML, Goulding D, Rayner JC, Choudhary JS, Billker O (2012) A Plasmodium calcium-dependent protein kinase controls zygote development and transmission by translationally activating repressed mRNAs. Cell Host Microbe 12:9–19. https://doi.org/10.1016/j.chom.2012.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinden RE, Billingsley PF (2001) Plasmodium invasion of mosquito cells: hawk or dove? Trends Parasitol 17:209–212

    Article  CAS  PubMed  Google Scholar 

  • Sinden RE, Croll NA (1975) Cytology and kinetics of microgametogenesis and fertilization in Plasmodium yoelii nigeriensis. Parasitology 70:53–65

    Article  CAS  PubMed  Google Scholar 

  • Sinden RE, Butcher GA, Billker O, Fleck SL (1996) Regulation of infectivity of Plasmodium to the mosquito vector. Adv Parasitol 38:53–117

    Article  CAS  PubMed  Google Scholar 

  • Summers KM, Howells AJ, Pyliotis NA (1982) Biology of eye pigmentation in insects. Adv Insect Physiol 16:119–166. https://doi.org/10.1016/S0065-2806(08)60153-8

    Article  CAS  Google Scholar 

  • Takasu Y, Sajwan S, Daimon T, Osanai-Futahashi M, Uchino K, Sezutsu H, Tamura T, Zurovec M (2013) Efficient TALEN construction for Bombyx mori gene targeting. PLoS ONE 8:e73458. https://doi.org/10.1371/journal.pone.0073458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takasu Y, Tamura T, Sajwan S, Kobayashi I, Zurovec M (2014) The use of TALENs for nonhomologous end joining mutagenesis in silkworm and fruitfly. Methods 69:46–57. https://doi.org/10.1016/j.ymeth.2014.02.014

    Article  CAS  PubMed  Google Scholar 

  • Taylor LH (1999) Infection rates in, and the number of Plasmodium falciparum genotypes carried by Anopheles mosquitoes in Tanzania. Ann Trop Med Parasitol 93:659–662

    Article  CAS  PubMed  Google Scholar 

  • WHO (2015) World malaria report, 2014. WHO, Geneva

    Google Scholar 

  • Wu Y, Sinden RE, Churcher TS, Tsuboi T, Yusibov V (2015) Development of malaria transmission-blocking vaccines: from concept to product. Adv Parasitol 89:109–152. https://doi.org/10.1016/bs.apar.2015.04.001

    Article  PubMed  Google Scholar 

  • Yamamoto DS, Sumitani M, Nagumo H, Yoshida S, Matsuoka H (2012) Induction of antisporozoite antibodies by biting of transgenic Anopheles stephensi delivering malarial antigen via blood feeding. Insect Mol Biol 21:223–233

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto DS, Sumitani M, Kasashima K, Sezutsu H, Matsuoka H (2016) Inhibition of malaria infection in transgenic anopheline mosquitoes lacking salivary gland cells. PLoS Pathog 12:e1005872. https://doi.org/10.1371/journal.ppat.1005872

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to C. Seki (Jichi Medical University) for the excellent assistance with the dissection of mosquitoes. We thank K. Watano, J. Sato, and Y. Hata (Jichi Medical University) for rearing the mosquitoes and mice. We also thank Y. Takasu (National Agriculture and Food Research Organization) for providing the pBlue-TAL plasmids. This work was funded by grants from The Science Research Promotion Fund from the Promotion and Mutual Aid Corporation for Private School of Japan to DSY, Takeda Science Foundation to DSY, JSPS KAKENHI Grant Number 16K18824 to DSY, and JSPS KAKENHI Grant Number 17K08161 to MS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke S. Yamamoto.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, D.S., Sumitani, M., Hatakeyama, M. et al. Malaria infectivity of xanthurenic acid-deficient anopheline mosquitoes produced by TALEN-mediated targeted mutagenesis. Transgenic Res 27, 51–60 (2018). https://doi.org/10.1007/s11248-018-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-018-0057-2

Keywords

Navigation