Skip to main content
Log in

Expression of a fungal laccase fused with a bacterial cellulose-binding module improves the enzymatic saccharification efficiency of lignocellulose biomass in transgenic Arabidopsis thaliana

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Delignification is effective for improving the saccharification efficiency of lignocellulosic biomass materials. We previously identified that the expression of a fungal laccase (Lac) fused with a bacterial cellulose-binding module domain (CBD) improved the enzymatic saccharification efficiency of rice plants. In this work, to evaluate the ability of the Lac-CBD fused chimeric enzyme to improve saccharification efficiency in a dicot plant, we introduced the chimeric gene into a dicot model plant, Arabidopsis thaliana. Transgenic plants expressing the Lac-CBD chimeric gene showed normal morphology and growth, and showed a significant increase of enzymatic saccharification efficiency compared to control plants. The transgenic plants with the largest improvement of enzymatic saccharification efficiency also showed an increase of crystalline cellulose in their cell wall fractions. These results indicated that expression of the Lac-CBD chimeric protein in dicotyledonous plants improved the enzymatic saccharification of plant biomass by increasing the crystallinity of cellulose in the cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abramsona M, Shoseyova O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72

    Article  Google Scholar 

  • Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohyd Res 113:291–299

    Article  CAS  Google Scholar 

  • Bonawitz ND, Chapple C (2010) The genetics of lignin biosynthesis: connecting genotype to phenotype. Annu Rev Genet 44:337–363

    Article  CAS  PubMed  Google Scholar 

  • Brethauer S, Studer MH (2015) Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—a review. Chimia (Aarau) 69:572–581

    Article  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    Article  CAS  PubMed  Google Scholar 

  • Ciolacu D, Kovac J, Kokol V (2010) The effect of the cellulose-binding domain from Clostridium cellulovorans on the supramolecular structure of cellulose fibers. Carbohydr Res 345:621–630

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Din N, Gilkes NR, Tekant B, Miller RCJ, Warren RAJ, Kilburn DG (1991) Non-hydrolytic disruption of cellulose fibres by the binding domain of a bacterial cellulase. Nat Biotechnol 9:1096–1099

    Article  CAS  Google Scholar 

  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Edashige Y, Ishii T (1997) Rhamnogalacturonan I from xylem differentiating zones of Cryptomeria japonica. Carbohydr Res 304:357–365

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Sawaguchi C, Watanabe A, Takahashi M, Nigorikawa M, Furukawa K, Iimura Y, Kajita S, Oguchi T, Ito Y, Sonoki T (2013) Application of fungal laccase fused with cellulose-binding domain to develop low-lignin rice plants. J Biosci Bioeng 116:616–619

    Article  CAS  PubMed  Google Scholar 

  • Goldstein MA, Takagi M, Hashida S, Shoseyov O, Doi RH, Segel IH (1993) Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J Bacteriol 175:5762–5768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu WJ, Harding SA, Lung J, Popko JL, Ralph J, Stokke DD, Tsai CJ, Chiang VL (1999) Repression of lignin biosynthesis promotes cellulose accumulation and growth in transgenic trees. Nat Biotechnol 17:808–812

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Matsunaga T, Hayashi N (2001) Formation of rhamnogalacturonan II-borate dimer in pectin determines cell wall thickness of pumpkin tissue. Plant Physiol 126:1698–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeoh T, Ishizawa CI, Davis MF, Himmel ME, Adney WS, Johnson DK (2007) Cellulase digestibility of pretreated biomass is limited by cellulose accessibility. Biotechnol Bioeng 98:112–122

    Article  CAS  PubMed  Google Scholar 

  • Jouanin L, Goujon T, de Nadaï V, Martin MT, Mila I, Vallet C, Pollet B, Yoshinaga A, Chabbert B, Petit-Conil M, Lapierre C (2000) Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity. Plant Physiol 123:1363–1374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass: characterization of pretreated corn stover. Appl Biochem Biotechnol 121–124:1081–1099

    Article  PubMed  Google Scholar 

  • Li C, Knierim B, Manisseri C, Arora R, Scheller HV, Auer M, Vogel KP, Simmons BA, Singh S (2010) Comparison of dilute acid and ionic liquid pretreatment of switchgrass: biomass recalcitrance, delignification and enzymatic saccharification. Bioresour Technol 101:4900–4906

    Article  CAS  PubMed  Google Scholar 

  • Malinovsky FG, Fangel JU, Willats WG (2014) The role of the cell wall in plant immunity. Front Plant Sci 5:178

    Article  PubMed  PubMed Central  Google Scholar 

  • Min D, Li Q, Jameel H, Chiang V, Chang H-M (2011) Comparison of pretreatment protocols for cellulase-mediated saccharification of wood derived from transgenic low-xylan lines of cottonwood (P. trichocarpa). Biomass Bioenerg 35:3514–3521

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  CAS  PubMed  Google Scholar 

  • Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour Technol 117:352–359

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Kato T, Kakegawa K, Ishii T, Liu YG, Awano T, Takabe K, Nishiyama Y, Kuga S, Sato S, Nakamura Y, Tabata S, Shibata D (2001) Role of the putative membrane-bound endo-1,4-beta-glucanase KORRIGAN in cell elongation and cellulose synthesis in Arabidopsis thaliana. Plant Cell Physiol 42:251–263

    Article  CAS  PubMed  Google Scholar 

  • Sattler SE, Funnell-Harris DL (2013) Modifying lignin to improve bioenergy feedstocks: strengthening the barrier against pathogens. Front Plant Sci 4:70

    Article  PubMed  PubMed Central  Google Scholar 

  • Selvendran RR, O’Neill MA (1987) Isolation and analysis of cell walls from plant material. Methods Biochem Anal 32:25–153

    Article  CAS  PubMed  Google Scholar 

  • Shoseyov O, Takagi M, Goldstein MA, Doi RH (1992) Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci USA 89:3483–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tormo J, Lamed R, Chirino AJ, Morag E, Bayer EA, Shoham Y, Steitz TA (1996) Crystal structure of a bacterial family-III cellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J 15:5739–5751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vinzant TB, Ehrman CI, Adney WS, Thomas SR, Himmel ME (1997) Simultaneous saccharification and fermentation of pretreated hardwoods. Appl Biochem Biotechnol 62:99–104

    Article  CAS  Google Scholar 

  • Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99:3817–3828

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by a Cooperative Research Grant of the Plant Transgenic Design Initiative Program, Gene Research Center, University of Tsukuba (TO, RI, TF, and TS), and a Hirosaki University Grant for Exploratory Research by Young Scientists (TS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Oguchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iiyoshi, R., Oguchi, T., Furukawa, T. et al. Expression of a fungal laccase fused with a bacterial cellulose-binding module improves the enzymatic saccharification efficiency of lignocellulose biomass in transgenic Arabidopsis thaliana . Transgenic Res 26, 753–761 (2017). https://doi.org/10.1007/s11248-017-0043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-017-0043-0

Keywords

Navigation