Skip to main content
Log in

Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Grapevines are affected worldwide by viruses that compromise fruit yield and quality. Grapevine fanleaf virus (GFLV) causes fanleaf degeneration disease, a major threat to grapevine production. Transgenic approaches exploiting the RNA silencing machinery have proven suitable for engineering viral resistance in several crop species. However, the artificial microRNA (amiRNA)-based strategy has not yet been reported in grapevine. We developed two amiRNA precursors (pre-amiRNAs) targeting the coat protein (CP) gene of GFLV and characterised their functionality in grapevine somatic embryos. To create these pre-amiRNAs, natural pre-miR319a of Arabidopsis thaliana was modified by overlapping PCR in order to replace miR319a with two amiRNAs targeting different regions of the CP gene: amiRCP-1 or amiRCP-2. Transient expression of these two pre-amiRNA constructs was tested in grapevine somatic embryos after co-cultivation with Agrobacterium tumefaciens. Expression of amiRCP-1 and amiRCP-2 was detected in plant tissues by an endpoint stem-loop RT-PCR as early as 1 day after a 48-h co-cultivation, indicating active processing of pre-amiRNAs by the plant machinery. In parallel, GUS-sensor constructs (GCP-1 and GCP-2) were obtained by fusing the target sequence of amiRCP-1 or amiRCP-2 to the 3′ terminus of the GUS gene. Co-transformation assays with GUS-sensors and the pre-amiRNA constructs provided evidence for in vivo recognition and cleavage of the 21-nt target sequence of GUS-sensors by the corresponding amiRNA. This is the first report of amiRNA ectopic expression in grapevine. The constructs we developed could be useful for engineering GFLV-resistant grapes in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

amiRNA:

Artificial microRNA

GFLV:

Grapevine fanleaf virus

GUS:

β-Glucuronidase

CP:

Coat protein

References

  • Ai T, Zhang L, Gao Z, Zhu CX, Guo X (2011) Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants. Plant Biol (Stuttg) 13:304–316

    Article  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Brown DJF, Robertson WM, Trudgill DL (1995) Transmission of viruses by plant nematodes. Annu Rev Phytopathol 33:223–249

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  • Duan CG, Wang CH, Fang RX, Guo HS (2008) Artificial MicroRNAs highly accessible to targets confer efficient virus resistance in plants. J Virol 82:11084–11095

    Article  PubMed  CAS  Google Scholar 

  • Dupuis L (2010) Study of the interactions between Arabis mosaic virus and its host plants. PhD Thesis, Ruprecht-Karls-Universität Heidelberg & Université de Strasbourg

  • Fahim M, Millar AA, Wood CC, Larkin PJ (2011) Resistance to Wheat streak mosaic virus generated by expression of an artificial polycistronic microRNA in wheat. Plant Biotechnol J. doi:10.1111/j.1467-7652.2011.00647.x

    PubMed  Google Scholar 

  • Fernandez AI, Viron N, Alhagdow M, Karimi M, Jones M, Amsellem Z, Sicard A, Czerdenik A, Angenent G, Grierson D, May S, Seymour G, Eshed Y, Lemaire-Chamley M, Rothan C, Hilson P (2009) Flexible tools for gene expression and silencing in tomato. Plant Physiol 151:1729–1740

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Gribaudo I, Leopold S, Schartl A, Laimer M (2005) Molecular characterization of grapevine plants transformed with GFLV resistance genes: I. Plant Cell Rep 24:655–662

    Article  PubMed  CAS  Google Scholar 

  • Gambino G, Perrone I, Carra A, Chitarra W, Boccacci P, Torello Marinoni D, Barberis M, Maghuly F, Laimer M, Gribaudo I (2010) Transgene silencing in grapevines transformed with GFLV resistance genes: analysis of variable expression of transgene, siRNAs production and cytosine methylation. Transgenic Res 19:17–27

    Article  PubMed  CAS  Google Scholar 

  • Gölles R, da Câmara Machado A, Minafra A, Savino V, Saldarelli G, Martelli GP, Pühringer H, Katinger H, Laimer da Câmara Machado M (2000) Transgenic grapevines expressing coat protein gene sequences of Grapevine fanleaf virus, Arabis mosaic virus, Grapevine virus A and Grapevine virus B. Acta Hort 528:305–311

    Google Scholar 

  • Jardak-Jamoussi R, Winterhagen P, Bouamama B, Dubois C, Mliki A, Wetzel T, Ghorbel A, Reustle GM (2009) Development and evaluation of GFLV inverted repeat construct for genetic transformation of grapevine. Plant Cell Tissue Organ Cult 97:187–196

    Article  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jiang F, Song Y, Han Q, Zhu C, Wen F (2011) The choice of target site is crucial in artificial miRNA-mediated virus resistance in transgenic Nicotiana tabacum. Physiol Mol Plant Pathol 76:2–8

    Article  CAS  Google Scholar 

  • Jovel J, Walker M, Sanfaçon M (2007) Recovery of Nicotiana benthamiana plants from a necrotic response induced by a Nepovirus is associated with RNA silencing but not with reduced virus titer. J Virol 81:12285–12297

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E (2007) The role of site accessibility in microRNA target recognition. Nat Genetics 39:1278–1284

    Article  CAS  Google Scholar 

  • Khraiwesh B, Ossowski S, Weigel D, Reski R, Frank W (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Somers DE (2010) Rapid assessment of gene function in the circadian clock using artificial microRNA in Arabidopsis mesophyll protoplasts. Plant Physiol 154:611–621

    Article  PubMed  CAS  Google Scholar 

  • Krastanova S, Perrin M, Barbier P, Demangeat G, Cornuet P, Bardonnet N, Otten L, Pinck L, Walter B (1995) Transformation of grapevine rootstocks with the coat protein gene of Grapevine fanleaf Nepovirus. Plant Cell Rep 14:550–554

    Article  CAS  Google Scholar 

  • Li ZT, Dhekney SA, Dutt M, Gray DJ (2008) An improved protocol for Agrobacterium-mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tissue Organ Cult 93:311–321

    Article  Google Scholar 

  • Maghuly F, Leopold S, Da Câmara Machado A, Borroto Fernandez E, Ali Khan M, Gambino G, Gribaudo I, Schartl A, Laimer M (2006) Molecular characterization of grapevine plants transformed with GFLV resistance genes: II. Plant Cell Rep 25:546–553

    Article  PubMed  CAS  Google Scholar 

  • Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B (2009) Differential regulation of SERK, LEC1-like and Pathogenesis-Related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiol Biochem 47:743–752

    Article  PubMed  CAS  Google Scholar 

  • Martelli GP (1978) Nematode–borne viruses of grapevine, their epidemiology and control. Nematol Med 6:1–27

    Google Scholar 

  • Mauro MC, Toutain A, Walter B, Pinck L, Otten L, Coutos-Thevenot P, Deloire A, Barbier P (1995) High efficiency regeneration of grapevine plants transformed with the GFLV coat protein gene. Plant Sci 112:97–106

    Article  CAS  Google Scholar 

  • Mica E, Piccolo V, Delledonne M, Ferrarini A, Pezzotti M, Casati C, Del Fabbro C, Valle G, Policrit A, Morgante M, Pesole G, Pè ME, Horner DS (2010) Correction: High throughput approaches reveal splicing of primary microRNA transcripts and tissue specific expression of mature microRNAs in Vitis vinifera. BMC Genomics 11:109

    Article  PubMed  Google Scholar 

  • Molnar A, Bassett A, Thuenemann E, Schwach F, Karkare S, Ossowski S, Weigel D, Baulcombe D (2009) Highly specific gene silencing by artificial microRNAs in the unicellular alga Chlamydomonas reinhardtii. Plant J 58:165–174

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:493–497

    Article  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expresion of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Papp I, Mette MF, Aufsatz W, Daxinger L, Schauer SE, Ray A, van der Winden J, Matzke M, Matzke AJ (2003) Evidence for nuclear processing of plant microRNA and short interfering RNA precursors. Plant Physiol 132:1382–1390

    Article  PubMed  CAS  Google Scholar 

  • Qu J, Ye J, Fang R (2007) Artificial microRNA-mediated virus resistance in plants. J Virol 81:6690–6699

    Article  PubMed  CAS  Google Scholar 

  • RDC Team (2011) R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.r-project.org. Accessed 09 Sept 2011

  • Ritzenthaler C, Viry M, Pinck M, Margis R, Fuchs M, Pinck L (1991) Complete nucleotide sequence and genetic organization of Grapevine fanleaf Nepovirus RNA1. J Virol 72:2357–2365

    Article  CAS  Google Scholar 

  • Salomé PA, Weigel D, McClung CR (2010) The role of the Arabidopsis morning loop components CCA1, LHY, PRR7, and PRR9 in temperature compensation. Plant Cell 22:3650–3661

    Article  PubMed  Google Scholar 

  • Sanfaçon H, Wellink J, Le Gall O, Karasev A, van der Vlugt R, Wetzel T (2009) Secoviridae: a proposed family of plant viruses within the order Picornavirales that combines the families Sequiviridae and Comoviridae, the unassigned genera Cheravirus and Sadwavirus, and the proposed genus Torradovirus. Arch Virol 154:899–907

    Article  PubMed  Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Schellenbaum P, Jacques A, Maillot P, Bertsch C, Mazet F, Farine S, Walter B (2008) Characterization of VvSERK1, VvSERK2, VvSERK3 and VvL1L genes and their expression during somatic embryogenesis of grapevine (Vitis vinifera L.). Plant Cell Rep 27:1799–1809

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  PubMed  CAS  Google Scholar 

  • Serghini MA, Fuchs M, Pinck M, Reinbolt J, Walter B, Pinck L (1990) RNA2 of grapevine fanleaf virus: sequence analysis and coat protein cistron location. J Gen Virol 71:1433–1441

    Article  PubMed  CAS  Google Scholar 

  • Shi R, Yang C, Lu S, Sederoff R (2010) Specific down–regulation of PAL genes by artificial microRNAs in Populus trichocarpa. Planta 232:1281–1288

    Article  PubMed  CAS  Google Scholar 

  • Tang Y, Wang F, Zhao J, Xie K, Hong Y, Liu Y (2010) Virus-based microRNA expression for gene functional analysis in plants. Plant Physiol 153:632–641

    Article  PubMed  CAS  Google Scholar 

  • Valat L, Fuchs M, Burrus M (2006) Transgenic grapevine rootstock clones expressing the coat protein or movement protein genes of Grapevine fanleaf virus: Characterization and reaction to virus infection upon protoplast electroporation. Plant Sci 170:739–747

    Article  CAS  Google Scholar 

  • Varkonyi-Gasic E, Wu R, Wood M, Walton EF, Hellens RP (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 3:12

    Article  PubMed  Google Scholar 

  • Vervliet G, Holsters M, Teuchy H, Van Montagu M, Schell J (1975) Characterization of different plaque–forming and defective temperate phages in Agrobacterium. J Gen Virol 26:33–48

    Article  PubMed  CAS  Google Scholar 

  • Vigne E, Komar V, Fuchs M (2004) Field safety assessment of recombination in transgenic grapevines. Transgenic Res 13:165–179

    Article  PubMed  CAS  Google Scholar 

  • Warthmann N, Chen H, Ossowski S, Weigel D, Hervé P (2008) Highly specific gene silencing by artificial miARNs in rice. PLoS ONE 3:e1829

    Article  PubMed  Google Scholar 

  • Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–151

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Xue B, Ling KS, Reid CL, Krastanova S, Sekiya M, Momol EA, Süle S, Mozsar J, Gonsalves D, Burr TJ (1999) Transformation of five grape rootstocks with plant virus genes and a virE2 gene from Agrobacterium tumefaciens. In Vitro Cell Dev Biol Plant 35:226–231

    Article  CAS  Google Scholar 

  • Zhang X, Li H, Zhang J, Zhang C, Gong P, Ziaf K, Xiao F, Ye Z (2011) Expression of artificial microRNAs in tomato confers efficient and stable virus resistance in a cell-autonomous manner. Transgenic Res 20:569–581

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the French Ministry for Research. The authors thank Sascha Laubinger (University of Tuebingen, Germany) for his input concerning stem-loop RT-PCR, Marc Lollier (Université de Haute-Alsace, France) for statistical analysis, Leon Otten (Institut de Biologie Moléculaire des Plantes, France) for providing A. tumefaciens strain GV3101 (pMP90), Detlef Weigel (Max Planck Institute for Developmental Biology, Germany) for providing pRS300, and Ignacio Rubio Somoza (Max Planck Institute for Developmental Biology, Tuebingen, Germany) for his helpful support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascale Maillot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 670 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jelly, N.S., Schellenbaum, P., Walter, B. et al. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Res 21, 1319–1327 (2012). https://doi.org/10.1007/s11248-012-9611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9611-5

Keywords

Navigation