Skip to main content
Log in

Preparation of Ni2P Supported on Al2O3 and B2O3 Mixed Oxides by Temperature-Programmed Reduction of Phosphate Precursors with Low P/Ni Ratios

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Two types of mixed oxides of B2O3 and Al2O3 were prepared. Aluminum borates (ABx, x represents the B/(B + Al) ratio) were prepared by low-temperature thermal decomposition of aluminum nitrate and H3BO3 sustained by the simultaneous oxidation of an organic agent (glycerol), while B2O3-Al2O3 with B/(B + Al) ratio of 0.3 was obtained by incipient wetness impregnation of H3BO3 on a commercial γ-Al2O3 support. Tetrahedrally, pentahedrally, and octahedrally coordinated Al3+ cations were all present in AB0.3 with ratios of 10.9/21.3/67.8, while no pentahedrally coordinated Al3+ was observed in B2O3-Al2O3. B2O3 was enriched in the surface of AB0.3. The Ni2P phase was obtained by temperature-programmed reduction of a phosphate precursor with a P/Ni ratio as low as 1.2 supported over both AB0.3 (Ni-P(1.2)/AB0.3) and B2O3-Al2O3 (Ni-P(1.2)/B2O3-Al2O3). This suggests that the surface B2O3 inhibits the reaction between nickel phosphates and Al2O3, and thus facilitates the formation of Ni2P. The hydrodesulfurization (HDS) of dibenzothiophene (DBT) over the supported Ni2P catalysts occurred mainly by the direct desulfurization pathway, and Ni-P(1.2)/B2O3-Al2O3 was much more active than Ni-P(1.2)/AB0.3. These features make B2O3-Al2O3 a promising support for Ni2P catalysts. The HDS of DBT followed a pseudo-first-order kinetics over Ni-P(1.2)/B2O3-Al2O3, whereas over Ni-P(1.2)/AB0.3 it can be described by pseudo-zero-order kinetics. The pseudo-zero-order kinetics suggests a strong adsorption of DBT on Ni-P(1.2)/AB0.3, which could be responsible for its lower activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sun FX, Wu WC, Wu ZL, Guo J, Wei ZB, Yang YX, Jiang ZX, Tian FP, Li C (2004) J Catal 228:298–310

    Article  CAS  Google Scholar 

  2. Infantes-Molina A, Cecilia JA, Pawelec B, Fierro JLG, Rodríguez-Castellón E, Jiménez-López A (2010) Appl Catal A 390:253–263

    Article  CAS  Google Scholar 

  3. Yang PF, Jiang ZX, Ying PL, Li C (2007) Chin J Catal 28:670–672

    Article  Google Scholar 

  4. Berenguer A, Bennett JA, Hunns J, Moreno I, Coronado JM, Lee AF, Pizarro P, Wilson K, Serrano DP (2018) Catal Today 304:72–79

    Article  CAS  Google Scholar 

  5. Hu XW, Yin YH, Liu W, Zhang XW, Zhang HX (2019) Chin J Catal 40:1085–1092

    Article  CAS  Google Scholar 

  6. Lei HT, Chen MX, Liang ZZ, Liu CY, Zhang W, Cao R (2018) Catal Sci Technol 8:2289–2293

    Article  CAS  Google Scholar 

  7. Duyar MS, Tsai C, Snider JL, Singh JA, Gallo A, Yoo JS, Medford AJ, Abild-Pedersen F, Studt F, Kibsgaard J, Bent SF, Nørskov JK, Jaramillo TF (2018) Angew Chem Int Ed 57:15045–15050

    Article  CAS  Google Scholar 

  8. Song XG, Ding YJ, Chen WM, Dong WD, Pei YP, Zang J, Li Y, Lü Y (2012) Chin J Catal 33:1938–1944

    Article  CAS  Google Scholar 

  9. Li W, Dhandapani B, Oyama ST (1998) Chem Lett 27:207–208

    Article  Google Scholar 

  10. Prins R, Bussell ME (2012) Catal Lett 142:1413–1436

    Article  CAS  Google Scholar 

  11. Oyama ST, Wang X, Lee YK, Chun WJ (2004) J Catal 221:263–273

    Article  CAS  Google Scholar 

  12. Wang AJ, Ruan LF, Teng Y, Li X, Lu MH, Ren J, Wang Y, Hu YK (2005) J Catal 229:314–321

    Article  CAS  Google Scholar 

  13. Burns AW, Layman KA, Bale DH, Bussell ME (2008) Appl Catal A 343:68–76

    Article  CAS  Google Scholar 

  14. Sawhill SJ, Layman KA, Van Wyk DR, Engelhard MH, Wang CM, Bussell ME (2005) J Catal 231:300–313

    Article  CAS  Google Scholar 

  15. Clark PA, Oyama ST (2003) J Catal 218:78–87

    Article  CAS  Google Scholar 

  16. Cho K-S, Seo H-R, Lee Y-K (2011) Catal Commun 12:470–474

    Article  CAS  Google Scholar 

  17. Peroni M, Mancino G, Baráth E, Gutiérrez OY, Lercher JA (2016) Appl Catal B 180:301–311

    Article  CAS  Google Scholar 

  18. Rodriguez JA, Kim JY, Hanson JC, Sawhill SJ, Bussell ME (2003) J Phys Chem B 107:6276–6285

    Article  CAS  Google Scholar 

  19. Guan QX, Li W (2010) J Catal 271:413–415

    Article  CAS  Google Scholar 

  20. Yang SF, Prins R (2005) Chem Commun 36:4178–4180

    Article  Google Scholar 

  21. Liu DP, Wang AJ, Liu CG, Prins R (2017) Catal Today 292:133–142

    Article  CAS  Google Scholar 

  22. Li X, Feng JP, Guo JY, Wang AJ, Prins R, Duan XP, Chen YY (2016) J Catal 334:116–119

    Article  CAS  Google Scholar 

  23. Delmastro A, Gozzelino G, Mazza D, Vallino M, Busca G, Lorenzelli V (1992) J Chem Soc Faraday Trans 88:2065–2070

    Article  CAS  Google Scholar 

  24. Simon S, van der Pol A, Reijerse EJ, Kentgens APM, van Moorsel GJMP, de Boer E (1994) J Chem Soc Faraday Trans 90:2663–2670

    Article  CAS  Google Scholar 

  25. Simon S, van Moorsel GJMP, Kentgens APM, de Boer E (1995) Solid State Nucl Magn Reson 5:163–173

    Article  CAS  Google Scholar 

  26. Levenspiel O (1998) Chemical reaction engineering, 3rd edn. Wiley, New York, p 394

    Google Scholar 

  27. Li X, Lu M, Wang A, Song C, Hu Y (2008) J Phys Chem C 112:16584–16592

    Article  CAS  Google Scholar 

  28. Toniolo JC, Lima MD, Takimi AS, Bergmann CP (2005) Mater Res Bull 40:561–571

    Article  CAS  Google Scholar 

  29. Liu MZ, Yang HM (2010) Colloid Surface A 371:126–130

    Article  CAS  Google Scholar 

  30. Sickafus KE, Wills JM, Grimes NW (1999) J Am Ceram Soc 82:3279–3292

    Article  CAS  Google Scholar 

  31. Prins R (2019) Angew Chem Int Ed 58:15548–15552

    Article  CAS  Google Scholar 

  32. John CS, Alma NCM, Hays GR (1983) Appl Catal 6:341–346

    Article  CAS  Google Scholar 

  33. Wischert R, Florian P, Copéret C, Massiot D, Sautet P (2014) J Phys Chem C 118:15292–15299

    Article  CAS  Google Scholar 

  34. Lee J, Jeon H, Oh DG, Szanyi J, Kwak JH (2015) Appl Catal A 500:58–68

    Article  CAS  Google Scholar 

  35. Streitz FH, Mintmire JW (1999) Phys Rev B 60:773–777

    Article  CAS  Google Scholar 

  36. Stranick MA, Houalla M, Hercules DM (1987) J Catal 104:396–412

    Article  CAS  Google Scholar 

  37. Bai J, Li X, Wang AJ, Prins R, Wang Y (2012) J Catal 287:161–169

    Article  CAS  Google Scholar 

  38. Li X, Bai J, Wang AJ, Prins R, Wang Y (2011) Top Catal 54:290–298

    Article  CAS  Google Scholar 

  39. Wang HM, Prins R (2009) J Catal 264:31–43

    Article  CAS  Google Scholar 

  40. Sun YY, Prins R (2009) J Catal 267:193–201

    Article  CAS  Google Scholar 

  41. Bussell ME, Miles CE, Carlson TR, Morgan BJ, Topalian PJ, Schare JR (2020) Hydrodesulfurization properties of nickel phosphide on borontreated alumina supports. ChemCatChem. https://doi.org/10.1002/cctc.202000755

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Natural Science Foundation of China (21673029), the Natural Science Foundation of Tianjin (19JCZDJC31700), and the Opening Fund of State Key Laboratory of Heavy Oil Processing (SKLOP202002003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Li.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, S., Li, X., Zhou, X. et al. Preparation of Ni2P Supported on Al2O3 and B2O3 Mixed Oxides by Temperature-Programmed Reduction of Phosphate Precursors with Low P/Ni Ratios. Top Catal 63, 1379–1387 (2020). https://doi.org/10.1007/s11244-020-01344-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01344-6

Keywords

Navigation