Skip to main content
Log in

Cerium Oxide Based Catalysts for Wet Air Oxidation of Bisphenol A

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Catalytic wet air oxidation of an aqueous solution, bisphenol A (BPA), was carried out at 160 °C and at 20 bar of air in a batch reactor. Silver catalysts (2.5 wt%) prepared by wet impregnation and complexation on commercial CeO2 in addition to Ce0.85Zr0.15O2 and Ce0.2Zr0.8O2 sol–gel mixed oxides were synthesized and used as catalysts in the reaction. Characterizations of the catalysts were performed by using FESEM, XRD, BET, XPS and ICP–OES techniques. Residual BPA concentration was analyzed by using an UV–Vis technique and organic compound content was measured via the total organic carbon method. Commercial CeO2 showed a smaller specific surface area and a larger crystallite size than laboratory prepared Ce–Zr mixed oxides. The highest BPA removal (76 %) was achieved after 3 h with CeO2, Ce0.85Zr0.15O2 and Ag/Ce0.85Zr0.15O2 catalysts revealing that the addition of silver had no effect on the catalytic activity of the pure supports. However, the loading of active metal to the supports by complexation decreased the adsorption of the BPA during the heating period and hence the Ag/Ce0.85Zr0.15O2 prepared via complexation was the most active catalyst with only 1 % adsorption of BPA. Moreover, the activity of the catalysts was not related to the surface area of the samples. According to the ICP–OES analysis of the terminal water samples, leaching of the silver was occurred during oxidation experiments explaining the behavior of Ag catalysts in the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Chemosphere 42:415–418

    Article  CAS  Google Scholar 

  2. Fürhacker M, Scharf S, Weber H (2000) Chemosphere 42:751–756

    Article  Google Scholar 

  3. Staples CA, Dorn PB, Klecka GM, O´Block ST, Harris LR (1998) Chemosphere 36(10):2149–2173

    Article  CAS  Google Scholar 

  4. Vandenberg LN, Chahoud I, Heindell JJ, Padmanadhan V, Paumgartten FJ, Schoenfelder G (2010) Environ Health Perspect 118(8):1055–1070

    Article  CAS  Google Scholar 

  5. Lindhost C, Pedersen KL, Pedersen SN (2000) Aquat Toxicol 48:87–94

    Article  Google Scholar 

  6. Tanaka H, Yakou Y, Takahashi A, Higashitani T, Komori K (2001) Water Sci Technol 43(2):125–132

    CAS  Google Scholar 

  7. Rosenfeldt EJ, Linden KG (2004) Environ Sci Technol 38:5476–5483

    Article  CAS  Google Scholar 

  8. Ohko Y, Ando I, Niwa C, Tatsuma T, Yamamura T, Nakashima T, Kubota Y, Fujishima A (2001) Environ Sci Technol 35:2365–2368

    Article  CAS  Google Scholar 

  9. Torres RA, Sarantakos G, Combet E, Petrier C, Pulgarin C (2008) J Photochem Photobiol A 199:197–203

    Article  CAS  Google Scholar 

  10. Deborde M, Rabouan S, Mazellier P, Duguet J-P, Legube B (2008) Water Res 42:4299–4308

    Article  CAS  Google Scholar 

  11. Erjavec B, Kaplan R, Djinović P, Pintar A (2013) Appl Catal B 132–133:342–352

    Article  Google Scholar 

  12. Heponiemi A, Rahikka L, Lassi U, Kuokkanen T (2011) Top Catal 54(16–18):1034–1041

    Article  CAS  Google Scholar 

  13. Lin SS, Chen CL, Chang DJ, Chen CC (2002) Water Res 36:3009–3014

    Article  CAS  Google Scholar 

  14. Chen IP, Lin SS, Wang CH, Chang L, Chang JS (2004) Appl Catal B 50:49–58

    Article  CAS  Google Scholar 

  15. Chen H, Sayari A, Adnot A, Larachi F (2001) Appl Catal B 32:165–204

    Article  Google Scholar 

  16. Yang SX, Zhu WP, Wang JB, Chen ZX (2008) J Hazard Mater 153:1248–1253

    Article  CAS  Google Scholar 

  17. Mikulová J, Rossignol J, Barbier J, Mesnard D, Kappenstein C, Duprez D (2007) Appl Catal B 72:1–10

    Article  Google Scholar 

  18. Yang SX, Zhu WP, Jiang ZP, Chen ZX, Wang JB (2006) Appl Surf Sci 252:8499–8505

    Article  CAS  Google Scholar 

  19. Triki M, Ksibi Z, Ghorbel A, Medina F (2009) Microporous Mesoporous Mater 117:431–435

    Article  CAS  Google Scholar 

  20. Li N, Descorme C, Besson M (2007) Appl Catal B 76:92–100

    Article  CAS  Google Scholar 

  21. Mikulová J, Barbier J, Rossignol J, Mesnard D, Duprez D, Kappenstein C (2007) J Catal 251:172–181

    Article  Google Scholar 

  22. Núñez F, Del Angel G, Tzompantzi F, Navarrete J (2011) Ind Eng Chem Res 50:2495–2500

    Article  Google Scholar 

  23. Silva AMT, Marques RRN, Quinta-Ferreira RM (2004) Appl Catal B 47:269–279

    Article  CAS  Google Scholar 

  24. Hamoudi S, Sayari A, Belkacemi K, Bonneviot L, Larachi F (2000) Catal Today 62:379–388

    Article  CAS  Google Scholar 

  25. Heponiemi A, Rahikka L, Lassi U, Kuokkanen T (2009) Chem Eng Trans 17:209–221

    Google Scholar 

  26. International Centre for Diffraction Data (ICDD) (2013) PDF-4 + powder diffraction database. 12 Campus Boulevard Newton Square, PA 19073-3273, USA

  27. Alifanti M, Baps B, Blangenois N, Naud J, Grange P, Delmon B (2003) Chem Mater 15:395–403

    Article  CAS  Google Scholar 

  28. Mikulová J, Rossignol S, Barbier J Jr, Dubrez D, Kappenstein C (2007) Catal Today 134:185–190

    Article  Google Scholar 

  29. Galtayries A, Sporken R, Riga J, Blanchard G, Caudano R (1998) J Electron Spectrosc Relat Phenom 88–91:951–956

    Article  Google Scholar 

  30. Nagai Y, Yamamoto T, Tanaka T, Yoshida S, Nonaka T, Okamotoa T, Suda A, Sugiura M (2002) Catal Today 74:225–234

    Article  CAS  Google Scholar 

  31. Shyu JZ, Weber WH, Gandhi HS (1988) J Phys Chem 92:4964–4970

    Article  CAS  Google Scholar 

  32. Wang X, Hou X, Luan W, Li D, Yao K (2012) Appl Surf Sci 258:8241–8246

    Article  CAS  Google Scholar 

  33. Gao XY, Wang SY, Li J, Zheng YX, Zhang RJ, Zhou P, Yang YM, Chen LY (2004) Thin Solid Films 455–456:438–442

    Article  Google Scholar 

  34. Reddy BM, Khan A (2003) Langmuir 19:3025–3030

    Article  CAS  Google Scholar 

  35. Silva AMT, Castelo-Branco IM, Quinta-Ferreira RM, Levec J (2003) Chem Eng Sci 58:963–970

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Academy of Finland for providing research funding, AOPI project (263397) within the research program for Sustainable Governance of Aquatic Resources (AKVA). Centre of Microscopy and Nanotechnology at the University of Oulu, Finland is also acknowledged for its research facilities in XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Heponiemi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heponiemi, A., Azalim, S., Hu, T. et al. Cerium Oxide Based Catalysts for Wet Air Oxidation of Bisphenol A. Top Catal 58, 1043–1052 (2015). https://doi.org/10.1007/s11244-015-0457-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0457-y

Keywords

Navigation