Skip to main content
Log in

Rational Design of Engineered Multifunctional Heterogeneous Catalysts. The Role of Advanced EPR Techniques

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The importance of surface paramagnetic species owes much to that of surface phenomena which are involved in numerous areas of chemistry and material science such as heterogeneous catalysis, photochemistry and, in general terms, nano-sciences and technology. In the present contribution the opportunities offered by the use of EPR in the field of heterogeneous catalysis, with emphasis on the application of hyperfine techniques, will be illustrated taking as an example Ti-based catalytic materials. The reductive activation of framework titanium ions in the different materials and their sub-sequent reactivity towards NH3 is followed, highlighting subtle differences in chemical reactivity related to the different matrixes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adrian FJ (1968) J Colloid Interface Sci 26:317–354

    Article  CAS  Google Scholar 

  2. Lunsford JH (1972) Adv Catal 32:265–277

    Google Scholar 

  3. Howe RF (1993) Colloids Surf A 72:353–363

    Article  CAS  Google Scholar 

  4. Che M, Giamello E (1994) Catalyst characterization: physical techniques for solid materials. In: Imelik B, Vedrine JC (eds) Techniques for solid materials, Ch 6. Plenum Press, New York

    Google Scholar 

  5. Dyrek K, Che M (1997) Chem Rev 97:305–331

    Article  CAS  Google Scholar 

  6. Chiesa M, Giamello E, Che M (2010) Chem Rev 110:1320–1347

    Article  CAS  Google Scholar 

  7. Bruckner A (2010) Chem Soc Rev 39:4673–4684

    Article  Google Scholar 

  8. Van Doorslaer S, Murphy DM (2012) EPR Spectrosc Catal Top Curr Chem 321:1–39

    Google Scholar 

  9. Goldfarb D (2006) Phys Chem Chem Phys 8:2325–2343

    Article  CAS  Google Scholar 

  10. Dinse A, Ozarowski A, Hess C, Schomäcker R, Dinse KP (2008) J Phys Chem C 112:17664–17671

    Article  CAS  Google Scholar 

  11. Dinse A, Carrero C, Ozarowski A, Schomäcker R, Schlögl R, Dinse KP (2012) Chem Cat Chem 4:641–652

    CAS  Google Scholar 

  12. Dinse A, Wolfram T, Carrero C, Schlögl R, Schomäcker R, Dinse KP (2013) J Phys Chem C 117:16921–16932

    Article  CAS  Google Scholar 

  13. Pöppl A, Manikandan P, Köhler K, Maas P, Strauch P, Böttcher R, Goldfarb D (2001) J Am Chem Soc 123:4577–4584

    Article  Google Scholar 

  14. Raja R, Potter ME, Newland SH (2014) Chem Commun 50:5940–5957

    Article  CAS  Google Scholar 

  15. Taramasso M, Perego G, Notari B (1983) US Patent Nr. 4410501

  16. Notari B (1996) Adv Catal 41:253–334

    CAS  Google Scholar 

  17. Wilson SI, Lok BM, Messina CA, Cannan TR, Flanigen EM (1982) J Am Chem Soc 104:1146–1147

    Article  CAS  Google Scholar 

  18. Lee SO, Raja R, Harris KDM, Thomas JM, Johnson BFG, Sankar G (2003) Angew Chem Int Ed 42:1520–1523

    Article  CAS  Google Scholar 

  19. Raja R, Sankar G, Thomas JM (1999) J Am Chem Soc 121:11926–11927

    Article  CAS  Google Scholar 

  20. Thomas JM, Raja R, Sankar G, Bell RG (2001) Acc Chem Res 34:191–200

    Article  CAS  Google Scholar 

  21. Arends IWCE, Sheldon RA, Wallau M, Schuchardt U (1997) Angew Chem Int Ed Engl 36:1144–1163

    Article  Google Scholar 

  22. Oldroyd RD, Sankar G, Thomas JM, Ozkaya D (1998) J PhysChem B 102:1849–1855

    CAS  Google Scholar 

  23. Notari B (1996) Adv Catal 41:253–334

    CAS  Google Scholar 

  24. Tanev PT, Chibwe M, Pinnavaia TJ (1994) Nature 368:321–323

    Article  CAS  Google Scholar 

  25. Anpo M, Thomas JM (2006) Chem Commun 31:3273–3278

    Article  Google Scholar 

  26. Paterson J, Potter M, Gianotti E, Raja R (2011) Chem Commun 47:517–519

    Article  CAS  Google Scholar 

  27. Corma A, Navarro MT (1994) Pérez Pariente. J J Chem Soc Chem Commun 2:147–148

    Article  Google Scholar 

  28. Oldroyd RD, Thomas JM, Maschmeyer T (1996) Mac Faul PA, Snelgrove DW, Ingold KU, Wayner DDM. Angew Chem Int Ed Engl 35:2787–2790

    Article  CAS  Google Scholar 

  29. Maschmeyer T, Rey F, Sankar G, Thomas JM (1995) Nature 378:159–162

    Article  CAS  Google Scholar 

  30. Gianotti E, Dellarocca V, Marchese L, Martra G, Coluccia S, Maschmeyer T (2002) Phys Chem Chem Phys 4:6019–6115

    Article  Google Scholar 

  31. Anpo M, Thomas JM (2006) Chem Commun 31:3273–3278

    Article  Google Scholar 

  32. Thomas JM, Raja R, Lewis DW (2005) Angew Chem Int Ed 44:6456–6482

    Article  CAS  Google Scholar 

  33. Zhanpeisov NU, Anpo M (2004) J Am Chem Soc 126:9439–9444

    Article  CAS  Google Scholar 

  34. Bordiga S, Bonino F, Damin A, Lamberti C (2007) Phys Chem Chem Phys 9:4854–4858

    Article  CAS  Google Scholar 

  35. Corà F, Catlow CRA (2001) J Phys Chem B 105:10278–10281

    Article  Google Scholar 

  36. Kuznicki SM (1989) US Patent Nr. 4853202

  37. Anderson MW, Terasaki O, Ohsuna T, Philippou A, Mac Kay SP, Ferreira A, Rocha J, Lidin S (1994) Nature 367:347–351

    Article  CAS  Google Scholar 

  38. Philippou A, Naderi M, Rocha J, Anderson MW (1998) Catal Lett 53:221–224

    Article  CAS  Google Scholar 

  39. Philippou A, Anderson MW (2000) J Catal 189:395–400

    Article  CAS  Google Scholar 

  40. Valente A, Lin Z, Brandão P, Portugal I, Anderson MW, Rocha J (2001) J Catal 200:99–105

    Article  CAS  Google Scholar 

  41. Doskocil EJ (2005) J Phys Chem B 109:2315–2320

    Article  CAS  Google Scholar 

  42. Waghmode SB, Vetrivel R, Gohinath CS, Sivasanker S (2004) J Phys Chem B 108:11541–11548

    Article  CAS  Google Scholar 

  43. Borello E, Lamberti C, Bordiga S, Zecchina A, Areán CO (1997) Appl Phys Lett 71:2319–2321

    Article  CAS  Google Scholar 

  44. LlabrésiXamena FX, Damin A, Bordiga S, Zecchina A (2003) Chem Commun 1514–1515

  45. Damin A, LlabrésiXamena FX, Lamberti C, Civalleri B, Zicovich-Wilson CM, Zecchina A (2004) J Phys Chem B 108:1328–1336

    Article  CAS  Google Scholar 

  46. Bordiga S, Palomino GT, Zecchina A, Ranghino G, Giamello E, Lamberti C (2000) J Chem Phys 112:3859–3867

    Article  CAS  Google Scholar 

  47. Goodenough JB (1971) Progress in solid state chemistry. Pergamon, NewYork

    Google Scholar 

  48. Ricchiardi G, Damin A, Bordiga S, Lamberti C, Span G, Rivetti F, Zecchina A (2001) J Am Chem Soc 123:11409–11419

    Article  CAS  Google Scholar 

  49. Gallo E, Bonino F, Swarbrick JC, Petrenko T, Piovano A, Bordiga S, Gianolio D, Groppo E, Neese F, Lamberti C, Glatzel P (2013) Chem Phys Chem 14:79–83

    CAS  Google Scholar 

  50. Maurelli S, Muthusamy V, Chiesa M, Berlier G, Van Doorslaer S (2011) J Am Chem Soc 133:7340–7343

    Article  CAS  Google Scholar 

  51. Maurelli S, Vishnuvarthan M, Berlier G, Chiesa M (2012) Phys Chem Chem Phys 14:987–995

    Article  CAS  Google Scholar 

  52. Novara C, Alfayate A, Berlier G, Maurelli S, Chiesa M (2013) Phys Chem Chem Phys 15:11099–11105

    Article  CAS  Google Scholar 

  53. Höfer P, Grupp A, Nebenfür H, Mehring M (1986) Chem Phys Lett 132:279–282

    Article  Google Scholar 

  54. Stoll S, Schweiger A (2006) J Magn Reson 178:42–55

    Article  CAS  Google Scholar 

  55. Prakash AM, Kevan L (1998) J Catal 178:586–597

    Article  CAS  Google Scholar 

  56. Morra E, Giamello E, Chiesa M (2014) Chem Eur J 20:7381–7388

    Article  CAS  Google Scholar 

  57. Figgis BN (1967) Introduction to ligand fields. John Wiley & Sons, New York

    Google Scholar 

  58. Weil JA, Bolton JR, Wertz JE (1994) Electron paramagnetic resonance: elementary theory and practical applications. John Wiley, New York

    Google Scholar 

  59. Abraham A, Bleaney B (1970) Electron paramagnetic resonance of transition ions. Oxford University Press, Oxford

    Google Scholar 

  60. Solntsev VP, Yurkin AM (2000) Cryst Rep 45:128–132

    Article  Google Scholar 

  61. Maurelli S, Livraghi S, Chiesa M, Giamello E, Van Doorslaer S, Di Valentin C, Pacchioni G (2011) Inorg Chem 50:2385–2394

    Article  CAS  Google Scholar 

  62. Zamani S, Meynen V, Hanu AM, Mertens M, Popovici E, Van Doorslaer S, Cool P (2009) Phys Chem Chem Phys 11:5823–5832

    Article  CAS  Google Scholar 

  63. Fitzpatrick JAJ, Manby FR, Western CM (2005) J Chem Phys 122:084312

    Article  Google Scholar 

  64. Arieli D, Delabie A, Strohmaier KG, Goldfarb D (2002) J Phys Chem B 106:7509–7519

    Article  CAS  Google Scholar 

  65. Maurelli S, Chiesa M, Giamello E, Leithall RM, Raja R (2012) Chem Commun 48:8700–8702

    Article  CAS  Google Scholar 

  66. Leithall R, Shetti V, Maurelli S, Chiesa M, Gianotti E, Raja R (2013) J Am Chem Soc 135:2915–2918

    Article  CAS  Google Scholar 

  67. Maurelli S, Berlier G, Chiesa M, Musso F, Corà F (2014) J Phys Chem C 118:19879–19888

    Article  CAS  Google Scholar 

  68. Kataev V, Baier J, Moller A, Jongen L, Meyer G, Freimuth A (2003) Phys Rev B 68:140405

    Article  Google Scholar 

  69. Ruckamp R, Baier J, Kriener M, Haverkort MW, Lorenz T, Uhrig GS, Jongen L, Möller A, Meyer G, Grüninger M (2005) Phys Rev Lett 95:097203

    Article  CAS  Google Scholar 

  70. Krimmel A, Strempfer J, Bohnenbuck B, Keimer B, Hoinkis M, Klemm M, Horn S, Loidl A, Sing M, Claessen R, Zimmermann MV (2006) Phys Rev B 73:172413

    Article  Google Scholar 

  71. Law JM, Hoch C, Glaum R, Heinmaa I, Stern R, Kang J, Lee C, Whangbo MH, Kremer RK (2011) Phys Rev B 83:180414

    Article  Google Scholar 

  72. Dikanov SA, Tsvetkov YD, Bowman MK, Astashkin AV (1982) Chem Phys Lett 90:149–153

    Article  CAS  Google Scholar 

  73. Stoll S, Calle C, Mitrikas G, Schweiger A (2005) J Magn Reson 177:93–101

    Article  CAS  Google Scholar 

  74. Van Doorslaer S, Shane JJ, Stoll S, Schweiger A, Kranenburg M, Meier RJ (2001) Organomet Chem 634:185–192

    Article  Google Scholar 

  75. Zamani S, Chiesa M, Meynen V, Xiao Y, Prélot B, Zajac J, Verpoort F, Cool P, Van Doorslaer S (2010) J Phys Chem C 114:12966–12975

    Article  CAS  Google Scholar 

  76. Woodworth J, Bowman MK, Larsen SC (2004) J Phys Chem B 108:16128–16134

    Article  CAS  Google Scholar 

  77. Fukui K, Ohya-Nishigchi H, Kamada H (1997) Inorg Chem 36:5518–5529

    Article  CAS  Google Scholar 

  78. Buy C, Matsui T, Andrianambinintsoa S, Sigalat C, Girault G, Zimmermann JL (1996) Biochemistry 35:14281–14293

    Article  CAS  Google Scholar 

  79. Fukui K, Ohya-Nishigchi H, Kamada H, Iwaizumi M, Xu Y (1998) Bull Chem Soc Jpn 71:2787–2796

    Article  CAS  Google Scholar 

  80. Dikanov SA, Tyryshkin AM, Huttermann J, Bogumil R, Witzel H (1995) J Am Chem Soc 117:4976–4986

    Article  CAS  Google Scholar 

  81. Dikanov SA, Samoilova RI, Smieja JA, Bowman MK (1995) J Am Chem Soc 117:10579–10580

    Article  CAS  Google Scholar 

  82. Mulks CF, Kirste B, Van Willigen H, Bowman MK (1982) J Am Chem Soc 104:5906–5911

    Article  CAS  Google Scholar 

  83. Kirste B, Van Willigen H (1982) J Phys Chem 86:2743–2753

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is part of the research program of the Dutch Polymer Institute (DPI), Project Nr. 754.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Chiesa.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 555 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morra, E., Maurelli, S., Chiesa, M. et al. Rational Design of Engineered Multifunctional Heterogeneous Catalysts. The Role of Advanced EPR Techniques. Top Catal 58, 783–795 (2015). https://doi.org/10.1007/s11244-015-0418-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0418-5

Keywords

Navigation