Skip to main content
Log in

Selectivities in Post-Synthetic Modification of Borosilicate Zeolites

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The chemistry of post-synthetic modification of borosilicate zeolites, and their understanding and use in catalytic applications are reviewed. First, a survey is given on the practical application of solid state NMR to follow the structural properties of boron. Then, the hydrolytic chemistry of boron in zeolites is summarized with a focus on selective reactivities of trigonal boron created by counterions, and stepwise extraction of boron from the framework. The reinsertion of other heteroatoms (mainly Al is discussed here) can be carried out by three different methods with different selectivities. First, the extent of Al reinsertion can be tailored quantitatively by controlling boron removal and vacancy formation with appropriate counterions. Secondly, the substitution of Al for B can be kinetically retarded by using uncalcined as-made zeolites with organic structure directing agents still occluded in the pores. Although these zeolites are not porous, quantitative replacement of framework atoms (Al for B) is possible, most likely by a solid state diffusion mechanism. Finally, Al reinsertion can be efficiently achieved in aqueous Al(NO3)3 solution under acidic conditions and is pore selective. This is due to the finding that the hydrated aluminum cations are too bulky for medium-sized pores, so that preferably 12-membered ring pores can be aluminated, and 10-membered ring pores do not substitute Al for B. This substitution can be quantitatively followed by the pH change in the zeolite/Al(NO3)3 slurry. A variety of catalytic test reactions are used to characterize the catalytic properties of the aluminosilicate zeolites prepared via post-synthetic treatment of their borosilicate counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Davis ME (2015) http://www.che.caltech.edu/groups/med/catalysis.html

  2. Gonzalez H, Hwang SJ, Davis ME (1999) New class of polymers for the delivery of macromolecular therapeutics. Bioconjugate Chem 10(6):1068–1074

    CAS  Google Scholar 

  3. Hwang SJ, Bellocq NC, Davis ME (2001) Effects of structure of beta-cyclodextrin-containing polymers on gene delivery. Bioconjugate Chem 12(2):280–290

    CAS  Google Scholar 

  4. Davis ME, Pun SH, Bellocq NC, Reineke TM, Popielarski SR, Mishra S, Heidel JD (2004) Self-assembling nucleic acid delivery vehicles via linear, water-soluble, cyclodextrin-containing polymers. Curr Med Chem 11(2):179–197

    CAS  Google Scholar 

  5. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417(6891):813–821

    CAS  Google Scholar 

  6. Wight AP, Davis ME (2002) Design and preparation of organic-inorganic hybrid catalysts. Chem Rev 102(10):3589–3613

    CAS  Google Scholar 

  7. Moliner M, Roman-Leshkov Y, Davis ME (2010) Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proc Natl Acad Sci USA 107(14):6164–6168

    CAS  Google Scholar 

  8. Lobo RF, Pan M, Chan I, Li HX, Medrud RC, Zones SI, Crozier PA, Davis ME (1993) SSZ-26 and SSZ-33-2 molecular sieves with intersecting 10-ring and 12-ring pores. Science 262(5139):1543–1546

    CAS  Google Scholar 

  9. Koller H, Lobo RF, Burkett SL, Davis ME (1995) SIO···HOSI hydrogen-bonds in As-synthesized high-silica zeolites. J Phys Chem 99(33):12588–12596

    CAS  Google Scholar 

  10. Nikolla E, Roman-Leshkov Y, Moliner M, Davis ME (2011) “One-pot” synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite. ACS Catal 1(4):408–410

    CAS  Google Scholar 

  11. Lee H, Zones SI, Davis ME (2003) A combustion-free methodology for synthesizing zeolites and zeolite-like materials. Nature 425(6956):385–388

    CAS  Google Scholar 

  12. Davis ME, Lobo RF (1992) Zeolite and molecular-sieve synthesis. Chem Mater 4(4):756–768

    CAS  Google Scholar 

  13. Lobo RF, Zones SI, Davis ME (1995) Structure-direction in zeolite synthesis. J Incl Phen Mol Recogn Chem 21(1–4):47–78

    CAS  Google Scholar 

  14. Corma A, Davis ME (2004) Issues in the synthesis of crystalline molecular sieves: towards the crystallization of low framework-density structures. Chem Phys Chem 5(3):304–313

    CAS  Google Scholar 

  15. Zeidan RK, Hwang SJ, Davis ME (2006) Multifunctional heterogeneous catalysts: SBA-15-containing primary amines and sulfonic acids. Angew Chem Int Edit 45(38):6332–6335

    CAS  Google Scholar 

  16. Davis ME, Saldarriaga C, Montes C, Garces J, Crowder C (1988) VPI-5: The first molecular sieve with pores larger than 10 Ångstroms. Zeolites 8(5):362–366

    CAS  Google Scholar 

  17. Kühl GH (1999) Modification of Zeolites. In: Weitkamp J, Puppe L (eds) Catalysis and zeolites. Springer, Berlin, pp 81–197

    Google Scholar 

  18. Szostak R (2001) Secondary synthesis methods. In: Van Bekkum H, Flanigen EM, Jacobs PA, Jansen JC (eds) Introduction to zeolite science and practice, vol 137. Elsevier, Amsterdam, pp 261–297

  19. Tatsumi T (2002) Modification of crystalline microporous solids. In: Schüth F, Sing KSW, Weitkamp J (eds) Handbook of porous solids, vol 2. Wiley-VCH, Weinheim, pp 903–935

    Google Scholar 

  20. Chen CY, Zones SI (2010) Post-synthetic treatment and modification of zeolites. In: Čejka J, Corma A, Zones S (eds) Zeolites and Catalysis. Wiley-VCH, Weinheim, pp 155–170

    Google Scholar 

  21. Valtchev V, Majano G, Mintova S, Pérez-Ramírez J (2013) Tailored crystalline microporous materials by post-synthesis modification. Chem Soc Rev 42(1):263–290

    CAS  Google Scholar 

  22. Krijnen S, Sánchez P, Jakobs BTF, van Hooff JHC (1999) A controlled post-synthesis route to well-defined and active titanium Beta epoxidation catalysts. Micropor Mesopor Mater 31(1–2):163–173

    CAS  Google Scholar 

  23. Senderov E, Halasz I, Olson DH (2014) On existence of hydroxyl nests in acid dealuminated zeolite Y. Micropor Mesopor Mater 186:94–100

    CAS  Google Scholar 

  24. Takewaki T, Beck LW, Davis ME (1999) Zincosilicate CIT-6: a precursor to a family of *BEA-type molecular sieves. J Phys Chem B 103(14):2674–2679

    CAS  Google Scholar 

  25. Takewaki T, Beck LW, Davis ME (1999) Synthesis of CIT-6, a zincosilicate with the (*)BEA topology. Top Catal 9(1–2):35–42

    CAS  Google Scholar 

  26. Jones CW, Tsuji K, Takewaki T, Beck LW, Davis ME (2001) Tailoring molecular sieve properties during SDA removal via solvent extraction. Micropor Mesopor Mater 48(1–3):57–64

    CAS  Google Scholar 

  27. Ikeda T, Inagaki S, Hanaoka T, Kubota Y (2010) Investigation of Si atom migration in the framework of MSE-type zeolite YNU-2. J Phys Chem C 114(46):19641–19648

    CAS  Google Scholar 

  28. Gabelica Z, Nagy JB, Bodart P, Debras G (1984) High-resolution solid-state MAS 11B-NMR evidence of boron incorporation in tetrahedral sites of zeolites. Chem Lett 7:1059–1062

    Google Scholar 

  29. Chang CD, Hellring SD, Miale JN, Schmitt KD, Brigandi PW, Wu EL (1985) Insertion of aluminum into high-silica-content zeolite frameworks. Part 3. Hydrothermal transfer of aluminum from alumina into [Al]ZSM-5 and [B]ZSM-5. J Chem Soc Faraday Trans 1 81(9):2215–2224

  30. Heinze V, Haupt HJ (1985) Mechanistic pathways for the reactions of C1–C4 alcohols, ethers and olefins on pentasil-type borosilicates. Zeolites 5(6):359–360

    CAS  Google Scholar 

  31. Scholle KFMGJ, Veeman WS (1985) The influence of hydration on the coordination state of boron in H-boralite studied by 11B Magic Angle Spinning NMR. Zeolites 5(2):118–122

    CAS  Google Scholar 

  32. Li G, Pang W, Huo Q, Qiu S, Zhu X, Xu Y (1986) Hetero-atom molecular sieve. (VI). Synthesis and properties of boron-silicon pentasil type molecular sieve in the sodium oxide-silicon dioxide-boric acid-water system. Gaodeng Xuexiao Huaxue Xuebao 7(3):197–202

    Google Scholar 

  33. Kessler H, Chezeau JM, Guth JL, Strub H, Coudurier G (1987) NMR and IR study of B and B-Al substitution in zeolites of the MFI-structure type obtained in nonalkaline fluoride medium. Zeolites 7(4):360–366

    CAS  Google Scholar 

  34. De Ruiter R, Jansen JC, Van Bekkum H (1992) On the incorporation mechanism of B and Al in MFI-type zeolite frameworks. Zeolites 12(1):56–62

    Google Scholar 

  35. Millini R, Perego G, Bellussi G (1999) Synthesis and characterization of boron-containing molecular sieves. Top Catal 9(1–2):13–34

    CAS  Google Scholar 

  36. Lobo RF, Davis ME (1995) CIT-1—a new molecular-sieve with intersecting pores bounded by 10-rings and 12-rings. J Am Chem Soc 117(13):3764–3779

    Google Scholar 

  37. Zones SI, Yuen LT, Nakagawa Y, Van Nordstrand RA, Toto SD (1993) An unexpected and highly versatile new zeolite synthesis route leading to large pore alumino and borosilicate sieves. In: 9th proc int zeolite conf, vol 1, pp 163–170

  38. Zones SI, Nakagawa Y (1995) Use of modified zeolites as reagents influencing nucleation in zeolite synthesis. Stud Surf Sci Catal 97:45–52

  39. Cantín A, Corma A, Diaz-Cabanas MJ, Jordá JL, Moliner M (2006) Rational design and HT techniques allow the synthesis of new IWR zeolite polymorphs. J Am Chem Soc 128(13):4216–4217

    Google Scholar 

  40. Zones SI (1994) Inorganic factors in the synthesis of large-pore borosilicates from tricyclo[5.2.1.02,6]decane organo-cations. Microporous Mater 2(4):281–287

    CAS  Google Scholar 

  41. Van Nordstrand RA, Santilli DS, Zones SI (1992) Aluminum- and boron-containing SSZ-24: inverse shape selectivity in the AFI structure. In: Occelli ML, Robson HE (eds) Synthesis of microporous materials, vol 1. Van Nostrand Reinhold, New York, pp 373–383

    Google Scholar 

  42. Chen CY, Zones SI (2001) From borosilicate to gallo- and aluminosilicate zeolites: new methods for lattice substitution via post-synthetic treatment. Stud Surf Sci Catal 135:1710–1717

  43. Xie D, McCusker LB, Baerlocher C, Gibson L, Burton AW, Hwang SJ (2009) Optimized synthesis and structural characterization of the borosilicate MCM-70. J Phys Chem C 113(22):9845–9850

    CAS  Google Scholar 

  44. Grünewald-Lüke A, Gies H, Müller U, Yilmaz B, Imai H, Tatsumi T, Xie B, Xiao FS, Bao XH, Zhang W, De Vos D (2011) Layered precursors for new zeolitic materials: synthesis and characterization of B-RUB-39 and its condensation product B-RUB-41. Micropor Mesopor Mater 147(1):102–109

    Google Scholar 

  45. Xie D, McCusker LB, Baerlocher C (2011) Structure of the borosilicate zeolite catalyst SSZ-82 solved using 2D-XPD charge flipping. J Am Chem Soc 133(50):20604–20610

    CAS  Google Scholar 

  46. Engelhardt G, Michel D (1987) High-resolution solid-state NMR of silicates and zeolites. Wiley, Chichester

    Google Scholar 

  47. Schramm S, Oldfield E (1982) High-resolution solid-state NMR-studies of quadrupolar nuclei - quadrupole-induced shifts in variable-angle sample-spinning of a borosilicate glass. J Chem Soc Chem Commun 17:980–981

    Google Scholar 

  48. Van Wüllen L, Müller-Warmuth W (1993) B-11 MAS NMR-spectroscopy for characterizing the structure of glasses. Solid State Nucl Magn Reson 2(5):279–284

    Google Scholar 

  49. Reddy Marthala VR, Hunger M, Kettner F, Krautscheid H, Chmelik C, Kärger J, Weitkamp J (2011) Solvothermal synthesis and characterization of large-crystal all-silica, aluminum-, and boron-containing ferrierite zeolites. Chem Mater 23(10):2521–2528

    Google Scholar 

  50. Fild C (2000) Lokalisierung und Koordination von Bor in siliciumreichen Zeolithen. University of Münster (Thesis), Münster

  51. Lobo RF, Davis ME (1994) Synthesis and characterization of pure-silica and boron-substituted SSZ-24 using N(16) methylsparteinium bromide as structure-directing agent. Microporous Mater 3(1–2):61–69

    CAS  Google Scholar 

  52. Bandyopadhyay R, Kubota Y, Sugimoto N, Fukushima Y, Sugi Y (1999) Synthesis of borosilicate zeolites by the dry gel conversion method and their characterization. Micropor Mesopor Mater 32(1–2):81–91

    CAS  Google Scholar 

  53. Yang C, Xu QH, Hu C (2000) Boronation and galliation of zeolites beta in an alkaline medium. Mater Chem Phys 63(1):55–66

    CAS  Google Scholar 

  54. Senapati S, Zimdars J, Ren J, Koller H (2014) Post-synthetic modifications of as-made zeolite frameworks near the structure-directing agents. J Mater Chem A 2:10470–10484

    CAS  Google Scholar 

  55. De Ruiter R, Kentgens APM, Grootendorst J, Jansen JC, Van Bekkum H (1993) Calcination and deboronation of boron-containing [B]-MFI single crystals. Zeolites 13(2):128–138

    Google Scholar 

  56. Mihályi RM, Pál-Borbély G, Beyer HK, Szegedi Á, Korányi TI (2007) Characterization of aluminum and boron containing beta zeolites prepared by solid-state recrystallization of magadlite. Micropor Mesopor Mater 98(1–3):132–142

    Google Scholar 

  57. Regli L, Bordiga S, Lamberti C, Lillerud KP, Zones SI, Zecchina A (2007) Effect of boron substitution in chabazite framework: IR studies on the acidity properties and reactivity towards methanol. J Phys Chem C 111(7):2992–2999

    CAS  Google Scholar 

  58. Trong On D, Kapoor MP, Bonneviot L, Kaliaguine S, Gabelica Z (1996) Structural state of boron in MFI-titanium boralites and their catalytic properties. J Chem Soc Faraday Trans 92(6):1031–1038

    CAS  Google Scholar 

  59. Scarano D, Zecchina A, Bordiga S, Geobaldo F, Spoto G, Petrini G, Leofanti G, Padovan M, Tozzola G (1993) Fourier-transform infrared and raman-spectra of pure and Al-substituted, B-substituted, Ti-substituted and Fe-substituted silicalites—stretching-mode region. J Chem Soc Faraday Trans 89(22):4123–4130

    CAS  Google Scholar 

  60. Turner GL, Smith KA, Kirkpatrick RJ, Oldfield E (1986) 11B nuclear-magnetic-resonance spectroscopic study of borate and borosilicate minerals and a borosilicate glass. J Magn Reson 67(3):544–550

    CAS  Google Scholar 

  61. Di Renzo F, Derewinski M, Chiari G, Plévert J, Driole MF, Fajula F, Schulz P (1996) Insertion of boron in tectosilicate frameworks in the presence of large alkali cations. Microporous Mater 6(3):151–157

    Google Scholar 

  62. Hansen MR, Vosegaard T, Jakobsen HJ, Skibsted J (2004) B-11 chemical shift anisotropies in borates from B-11 MAS, MQMAS, and single-crystal NMR spectroscopy. J Phys Chem A 108(4):586–594

    CAS  Google Scholar 

  63. Kennedy JD (1987) Boron. In: Mason J (ed) Multinuclear NMR. Plenum Press, New York

    Google Scholar 

  64. Müller D, Grimmer AR, Timper U, Heller G, Shakibaiemoghadam M (1993) 11B MAS NMR studies on the structure of borate anions. Z Anorg Allg Chem 619(7):1262–1268

    Google Scholar 

  65. Buhl JC, Engelhardt G, Felsche J (1989) Synthesis, X-ray-diffraction, and MAS NMR characteristics of tetrahydroxoborate sodalite, Na8[AlSiO4]6[B(OH)4]2. Zeolites 9(1):40–44

    CAS  Google Scholar 

  66. Kroeker S, Stebbins JF (2001) Three-coordinated boron-11 chemical shifts in borates. Inorg Chem 40(24):6239–6246

    CAS  Google Scholar 

  67. Wrackmeyer B (1988) Nuclear magnetic resonance spectroscopy of boron containing two-, three- and four-coordinate boron. In: Webb GA (ed) Ann rep NMR spectrosc, vol 20, pp 61–203

  68. Freyhardt CC, Wiebcke M, Felsche J, Engelhardt G (1994) N(NPr)4[B5O6(OH)4](B(OH)3]2 and N(NBu)4[B5O6(OH)4][B(OH)3]2—clathrates with a diamondoid arrangement of hydrogen-bonded pentaborate anions. J Inclus Phenom Mol 18(2):161–175

    CAS  Google Scholar 

  69. Wiebcke M, Freyhardt CC, Felsche J, Engelhardt G (1993) Clathrates with 3-dimensional host structures of hydrogen-bonded pentaborate [B5O6(OH)4] ions—pentaborates with the cations NMe4+, NEt4+, NPhMe3+ and Piph+ (Piph+ = Piperidinium). Z Naturforsch B 48(7):978–985

    CAS  Google Scholar 

  70. Harris RK, Mann BE (1978) NMR and the periodic table. Academic Press, London

    Google Scholar 

  71. Lezhnina MM, Jordan E, Klimin SA, Löns J, Koller H, Mavrin BN, Kynast U (2009) Fluoride containing guest species in alumosilicates: tetrafluoroborate in the sodalite Na8Al6Si6O24(BF4)2. Z Anorg Allg Chem 635(3):450–455

    CAS  Google Scholar 

  72. Buhl JC, Gesing TM, Ruscher CH (2005) Synthesis, crystal structure and thermal stability of tetrahydroborate sodalite Na8[AlSiO4]6(BH4)2. Micropor Mesopor Mater 80(1–3):57–63

    CAS  Google Scholar 

  73. Buhl JC, Murshed MM (2009) (Na4BH4)3+ guests inside aluminosilicate, gallosilicate and aluminogermanate sodalite host frameworks studied by H-1, B-11, and Na-23 MAS NMR spectroscopy. Mater Res Bull 44(7):1581–1585

    CAS  Google Scholar 

  74. Wiebcke M, Bögershausen A, Koller H (2005) Hydrothermal synthesis, crystal structure and thermal behaviour of a zincoborophosphate, (H4TETA)1.5[Zn6B6P12O48].1.5H2O (TETA = triethylenetetraamine), with a chiral tetrahedral framework (CZP framework type). Micropor Mesopor Mater 78(2–3):97–102

  75. Van Wüllen L, Müller-Warmuth W, Papageorgiou D, Pentinghaus HJ (1994) Characterization and structural developments of gel-derived borosilicate glasses—a multinuclear MAS-NMR study. J Non-Cryst Solids 171(1):53–67

    Google Scholar 

  76. Millini R, Montanari L, Bellussi G (1993) Synthesis and characterization of a potassium borosilicate with ANA framework type-structure. Microporous Mater 1(1):9–15

    CAS  Google Scholar 

  77. Samoson A (1985) Satellite transition high-resolution NMR of quadrupolar nuclei in powders. Chem Phys Lett 119(1):29–32

    CAS  Google Scholar 

  78. Dorset DL, Kennedy GJ (2005) Crystal structure of MCM-70: a microporous material with high framework density. J Phys Chem B 109(29):13891–13898

    CAS  Google Scholar 

  79. Grünewald-Lüke A, Marler B, Hochgräfe M, Gies H (1999) Quinuclidine derivatives as structure directing agents for the synthesis of boron containing zeolites. J Mater Chem 9(10):2529–2536

    Google Scholar 

  80. Goursot A, Berthomieu D (2004) Calculated magnetic properties for the characterization of zeolite active sites. Magn Reson Chem 42:S180–S186

    CAS  Google Scholar 

  81. Axon SA, Klinowski J (1994) Solid-state NMR studies of zeolite [Si, B]-ZSM-5 synthesized by the fluoride method. J Phys Chem 98(7):1929–1932

    CAS  Google Scholar 

  82. Kallus S, Patarin J, Caullet P, Faust AC (1997) Synthesis of boron-beta zeolite from near-neutral fluoride-containing gels. Microporous Mater 10(4–6):181–188

    CAS  Google Scholar 

  83. Han S, Schmitt KD, Schramm SE, Reischman PT, Shihabi DS, Chang CD (1994) Isomorphous substitution of boron into zeolite-ZSM-5 and zeolite-Y with aqueous NH4BF4. J Phys Chem 98(15):4118–4124

    CAS  Google Scholar 

  84. Garcia Vargas N, Stevenson S, Shantz DF (2013) Simultaneous isomorphous incorporation of boron and germanium in MFI zeolites. Micropor Mesopor Mater 170:131–140

    CAS  Google Scholar 

  85. Shvets OV, Shamzhy MV, Yaremov PS, Musilová Z, Procházková D, Čejka J (2011) Isomorphous introduction of boron in germanosilicate zeolites with UTL topology. Chem Mater 23(10):2573–2585

    CAS  Google Scholar 

  86. Oberhagemann U, Kinski I, Dierdorf I, Marler B, Gies H (1996) Synthesis and properties of boron containing MCM-41. J Non-Cryst Solids 197(2–3):145–153

    CAS  Google Scholar 

  87. Liu S, Heyong H, Luan Z, Klinowski J (1996) Solid-state NMR studies of the borosilicate mesoporous molecular sieve MCM-41. J Chem Soc Faraday Trans 92(11):2011–2015

    CAS  Google Scholar 

  88. Trong On D, Joshi PN, Kaliaguine S (1996) Synthesis, stability, and state of boron in boron-substituted MCM-41 mesoporous molecular sieves. J Phys Chem 100(16):6743–6748

    CAS  Google Scholar 

  89. Liu H, Ernst H, Freude D, Scheffler F, Schwieger W (2002) In situ 11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite. Micropor Mesopor Mater 54(3):319–330

    CAS  Google Scholar 

  90. Korányi TI, Nagy JB (2006) Distribution of aluminum and boron in the periodical building units of boron-containing beta zeolites. J Phys Chem B 110(30):14728–14735

    Google Scholar 

  91. De Ruiter R, Pamin K, Kentgens APM, Jansen JC, Van Bekkum H (1993) Synthesis of molecular-sieve [B]-bea and modification of the boron site. Zeolites 13(8):611–621

    Google Scholar 

  92. Hwang SJ, Chen CY, Zones SI (2004) Boron sites in borosilicate zeolites at various stages of hydration studied by solid state NMR spectroscopy. J Phys Chem B 108(48):18535–18546

    CAS  Google Scholar 

  93. Koller H, Fild C, Lobo RF (2005) Variable anchoring of boron in zeolite beta. Micropor Mesopor Mater 79(1–3):215–224

    CAS  Google Scholar 

  94. Fild C, Shantz DF, Lobo RF, Koller H (2000) Cation-induced transformation of boron-coordination in zeolites. Phys Chem Chem Phys 2(13):3091–3098

    CAS  Google Scholar 

  95. Koller H, Weiß M (2012) Solid state NMR of porous materials: zeolites and related materials. Top Curr Chem 306:189–227

    CAS  Google Scholar 

  96. Reddy Marthala VR, Wang W, Jiao J, Jiang YJ, Huang J, Hunger M (2007) Effect of probe molecules with different proton affinities on the coordination of boron atoms in dehydrated zeolite H-[B]ZSM-5. Micropor Mesopor Mater 99(1–2):91–97

    Google Scholar 

  97. Koller H, Meijer EL, van Santen RA (1997) 27Al quadrupole interaction in zeolites loaded with probe molecules—a quantum-chemical study of trends in electric field gradients and chemical bonds in clusters. Solid State NMR 9(2–4):165–175

    CAS  Google Scholar 

  98. Sauer J (1992) In: Catlow CRA (ed) Modelling of structure and reactivity in zeolites. Academic Press, London

    Google Scholar 

  99. Stave MS, Nicholas JB (1995) Density-functional studies of zeolites. 2. Structure and acidity of [T]-ZSM-5 models (T = B, Al, Ga, and Fe). J Phys Chem 99(41):15046–15061

    CAS  Google Scholar 

  100. Trudu F, Tabacchi G, Gamba A, Fois E (2008) Water in acid boralites: hydration effects on framework B sites. J Phys Chem C 112(39):15394–15401

    CAS  Google Scholar 

  101. Sen S (2008) Density functional theory calculations of 11B NMR parameters in crystalline borates. Mol Simulat 34(10–15):1115–1120

    CAS  Google Scholar 

  102. Edwards T, Endo T, Walton JH, Sen S (2014) Observation of the transition state for pressure-induced BO3 → BO4 conversion in glass. Science 345(6200):1027–1029

    CAS  Google Scholar 

  103. Martens R, Müller-Warmuth W (2000) Structural groups and their mixing in borosilicate glasses of various compositions—an NMR study. J Non-Cryst Solids 265(1–2):167–175

    CAS  Google Scholar 

  104. Tong HTT, Koller H (2012) Control of Al for B framework substitution in zeolite Beta by counterions. Micropor Mesopor Mater 148(1):80–87

    CAS  Google Scholar 

  105. Xu AN, Ma HF, Zhang HT, Ying WY, Fang DY (2013) Effect of boron on ZSM-5 catalyst for methanol to propylene conversion. Pol J Chem Technol 15(4):95–101

    CAS  Google Scholar 

  106. Dong WY, Sun YJ, He HY, Long YC (1999) Synthesis and structural characterization of B-Al-ZSM-5 zeolite from boron-silicon porous glass in the vapor phase. Micropor Mesopor Mater 32(1–2):93–100

    CAS  Google Scholar 

  107. Mortlock RF, Bell AT, Radke CJ (1991) NMR investigations of tetrapropylammonium aluminosilicate and borosilicate solutions. J Phys Chem 95(1):372–378

    CAS  Google Scholar 

  108. Romanova EE, Scheffler F, Freude D (2009) Crystallization of zeolite MFI under supergravity, studied in situ by 11B MAS NMR spectroscopy. Micropor Mesopor Mater 126(3):268–271

    CAS  Google Scholar 

  109. Balz R, Brändle U, Kammerer E, Köhnlein D, Lutz O, Nolle A, Schafitel R, Veil E (1986) B-11 and B-10 NMR investigations in aqueous-solutions. Z Naturforsch A 41(5):737–742

    Google Scholar 

  110. Perelygin YP, Chistyakov DY (2006) Boric acid. R J Appl Chem 79(12):2041–2042

    CAS  Google Scholar 

  111. Freude D, Haase J (1993) Quadrupole effects in solid-state nuclear magnetic resonance. In: Pfeifer H, Barker P (eds) NMR basic principles and progress, vol 29. Springer, Berlin, pp 1–90

    Google Scholar 

  112. Kentgens APM (1997) A practical guide to solid-state NMR of half-integer quadrupolar nuclei with some applications to disordered systems. Geoderma 80(3–4):271–306

    CAS  Google Scholar 

  113. Fernandez C, Pruski M (2012) Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances. Top Curr Chem 306:119–188

    CAS  Google Scholar 

  114. Jakobsen HJ, Skibsted J, Bildsøe H, Nielsen NC (1989) Magic-angle spinning NMR spectra of satellite transitions for quadrupolar nuclei in solids. J Magn Reson 85(1):173–180

    CAS  Google Scholar 

  115. Jäger C (1992) How to get more from 27Al MAS NMR by high-speed satellite-transition spectroscopy. J Magn Reson 99(2):353–362

    Google Scholar 

  116. Fenzke D, Freude D, Fröhlich T, Haase J (1984) NMR intensity measurements of half-integer quadrupole nuclei. Chem Phys Lett 111(1–2):171–175

    CAS  Google Scholar 

  117. Massiot D, Bessada C, Coutures JP, Taulelle F (1990) A quantitative study of 27Al MAS NMR in crystalline YAG. J Magn Reson 90(2):231–242

    CAS  Google Scholar 

  118. Liang J, Su J, Wang YX, Lin ZJ, Mu WJ, Zheng HQ, Zou RQ, Liao FH, Lin JH (2014) CHA-type zeolites with high boron content: synthesis, structure and selective adsorption properties. Micropor Mesopor Mater 194:97–105

    CAS  Google Scholar 

  119. Nagy JB, Engelhardt G, Michel D (1985) High-resolution NMR on adsorbate-adsorbent systems. Adv Colloid Interf Sci 23(1–4):67–128

    CAS  Google Scholar 

  120. Datka J, Kolodziejski W, Klinowski J (1994) 1H MAS NMR studies of hydroxyl-groups in aluminum-free H-boralites. Catal Lett 24(3–4):265–270

    CAS  Google Scholar 

  121. Baba T, Morikawa Y, Komatsu N, Takahashi T, Sugisawa H, Ono Y (2000) Nature of acidic protons in metallosilicate molecular sieves as studied by variable temperature 1H MAS NMR. Res Chem Intermediat 26(1):13–20

    CAS  Google Scholar 

  122. Wiper PV, Amelse J, Mafra L (2014) Multinuclear solid-state NMR characterization of Brønsted/Lewis acid properties in the BP HAMS-1B (H-[B]-ZSM-5) borosilicate molecular sieve using adsorbed TMPO and TBPO molecules. J Catal 316:240–250

    CAS  Google Scholar 

  123. Feyen FC, Burkert PK (1995) Nitrogen-15 and boron-11 NMR spectrometry of the system acetonitrile/H-ZSM-5. Z Naturforsch B 50(11):1753–1758

    CAS  Google Scholar 

  124. Lezcano-González I, Vidal-Moya A, Boronat M, Blasco T, Corma A (2010) Modelling active sites for the Beckmann rearrangement reaction in boron-containing zeolites and their interaction with probe molecules. Phys Chem Chem Phys 12(24):6396–6403

    Google Scholar 

  125. Brunner E, Karge HG, Pfeifer H (1992) On the correlation between the 1H NMR chemical shift and the stretching vibration frequency of hydroxyl-groups in solids. Z Phys Chem 176:173–183

    CAS  Google Scholar 

  126. Brunner E, Sternberg U (1998) Solid-state NMR investigations on the nature of hydrogen bonds. Progr Nucl Magn Reson Spectr 32:21–57

    CAS  Google Scholar 

  127. Beck LW, White JL, Haw JF (1994) 1H-27Al double-resonance experiments in solids—an unexpected observation in the 1H MAS spectrum of zeolite HZSM-5. J Am Chem Soc 116(21):9657–9661

    CAS  Google Scholar 

  128. Armaroli T, Bevilacqua M, Trombetta M, Milella F, Alejandre AG, Ramírez J, Notari B, Willey RJ, Busca G (2001) A study of the external and internal sites of MFI-type zeolitic materials through the FT-IR investigation of the adsorption of nitriles. Appl Catal A 216(1–2):59–71

    CAS  Google Scholar 

  129. Chu CTW, Chang CD (1985) Isomorphous substitution in zeolite frameworks. 1. Acidity of surface hydroxyls in [B]-ZSM-5, [Fe]-ZSM-5, [Ga]-ZSM-5, and [Al]-ZSM-5. J Phys Chem 89(9):1569–1571

    CAS  Google Scholar 

  130. Datka J, Kawalek M (1993) Strength of bronsted acid sites in boralites. J Chem Soc Faraday Trans 89(11):1829–1831

    CAS  Google Scholar 

  131. Chen CY, Zones SI (2002) Method for heteroatom lattice substitution in large pore borosilicate zeolites. US Patent US 6,468,501

  132. Ito A, Maekawa H, Kawagoe H, Komura K, Kubota Y, Sugi Y (2007) Shape-selective alkylation of biphenyl over H-[Al]-SSZ-24 zeolites with AFI topology. Bull Chem Soc Jpn 80(1):215–223

    CAS  Google Scholar 

  133. Liu M, Gao J, Guo X, Wang X, Li C, Feng Z (2006) Characterization and catalytic properties of highly effective Ti-ZSM-5 zeolite prepared by gas-solid reaction. Huagong Xuebao 57(4):791–798

    CAS  Google Scholar 

  134. Gao J, Liu M, Wang X, Guo X (2010) Characterization of Ti-ZSM-5 prepared by isomorphous substitution of B-ZSM-5 with TiCl4 and its performance in the hydroxylation of phenol. Ind Eng Chem Res 49(5):2194–2199

    CAS  Google Scholar 

  135. Rigutto MS, de Ruiter R, Niederer JPM, Van Bekkum H (1994) In: Weitkamp J, Karge HG, Pfeifer H, Hölderich W (eds) Studies in Surface Science and Catalysis, vol 84. Elsevier, Amsterdam, p 2245

  136. Juttu GG, Lobo RF (1999) Framework modification of microporous silicates via gas-phase treatment with ZrCl4. Catal Lett 62(2–4):99–106

    CAS  Google Scholar 

  137. Guo Q, Fan F, Pidko EA, van der Graaff WNP, Feng Z, Li C, Hensen EJM (2013) Highly active and recyclable Sn-MWW zeolite catalyst for sugar conversion to methyl lactate and lactic acid. Chemsuschem 6(8):1352–1356

    CAS  Google Scholar 

  138. Fild C, Eckert H, Koller H (1998) Evidence for selective association of tetrahedral BO4 units with Na+ and of trigonal BO3 units with H+ in dehydrated zeolite B-ZSM-5 from solid-state NMR spectroscopy. Angew Chem Int Edit 37(18):2505–2507

    CAS  Google Scholar 

  139. Trudu F, Tabacchi G, Gamba A, Fois E (2007) First principles studies on boron sites in zeolites. J Phys Chem A 111(45):11626–11637

    CAS  Google Scholar 

  140. Senapati S (2013) Tailored aluminum distribution in zeolites by post-synthetic modifications. University of Münster (Thesis), Münster

  141. Tong HTT (2007) Boron coordination and co-incorporation of Al, Ga in *BEA borosilicate and dissolution of zeolite nanoparticles from large particles in organic solvents. University of Münster (Thesis), Münster

  142. Forni L, Fornasari G, Trifirò F, Aloise A, Katovic A, Giordano G, Nagy JB (2007) Calcination and deboronation of B-MFI applied to the vapour phase Beckmann rearrangement. Micropor Mesopor Mater 101:161–168

    CAS  Google Scholar 

  143. Coudurier G, Auroux A, Vedrine JC, Farlee RD, Abrams L, Shannon RD (1987) Properties of boron-substituted ZSM-5 and ZSM-11 zeolites. J Catal 108(1):1–14

    CAS  Google Scholar 

  144. Tikhii YV, Moskalets AP, Kubasov AA (2007) Lewis acid sites in boralites. Theor Chem Acc 117(2):201–205

    CAS  Google Scholar 

  145. Liu XL, Ravon U, Tuel A (2011) Evidence for F/SiO anion exchange in the framework of as-synthesized all-silica zeolites. Angew Chem Int Ed 50(26):5900–5903

    CAS  Google Scholar 

  146. Liu XL, Ravon U, Tuel A (2011) Fluoride removal from double four-membered ring (D4R) units in as-synthesized Ge-containing zeolites. Chem Mater 23(22):5052–5057

    CAS  Google Scholar 

  147. Sulikowski B, Rakoczy J, Hamdan H, Klinowski J (1987) Structural and catalytic consequences of isomorphous substitution of silicon by aluminum and vice-versa in the framework of pentasil zeolites. J Chem Soc Chem Commun 20:1542–1543

    Google Scholar 

  148. Freyhardt CC, Tsapatsis M, Lobo RF, Balkus KJ, Davis ME (1996) A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature 381(6580):295–298

    CAS  Google Scholar 

  149. Lobo RF, Tsapatsis M, Freyhardt CC, Khodabandeh S, Wagner P, Chen CY, Balkus KJ, Zones SI, Davis ME (1997) Characterization of the extra-large-pore zeolite UTD-1. J Am Chem Soc 119(36):8474–8484

    CAS  Google Scholar 

  150. Chen CY, Zones SI, Hwang SJ, Bull LM (2004) Studies on Physicochemical and catalytic properties of borosilicate zeolites. In: van Steen E, Callanan LH, Claeys M (eds) Studies in Surface Science and Catalysis (Proc. 14th Zeolite Conf.), vol 154. Elsevier, Amsterdam

  151. Zones SI, Benin A, Hwang SJ, Xie D, Elomari S, Hsieh MF (2014) Studies of aluminum reinsertion into borosilicate zeolites with intersecting channels of 10- and 12-ring channel systems. J Am Chem Soc 136(4):1462–1471

    CAS  Google Scholar 

  152. Zones SI, Chen CY, Benin A, Hwang SJ (2013) Opportunities for selective catalysis within discrete portions of zeolites: the case for SSZ-57LP. J Catal 308:213–225

    CAS  Google Scholar 

  153. Baes CF, Mesmer RE (1976) Hydrolysis of cations. Wiley, New York

    Google Scholar 

  154. Frillette VJ, Haag WO, Lago RM (1981) Catalysis by crystalline aluminosilicates—characterization of intermediate pore-size zeolites by the constraint index. J Catal 67(1):218–222

    CAS  Google Scholar 

  155. Zones SI, Harris TV (2000) The constraint index test revisited: anomalies based upon new zeolite structure types. Micropor Mesopor Mater 35–6:31–46

    Google Scholar 

  156. Baerlocher C, Weber T, McCusker LB, Palatinus L, Zones SI (2011) Unraveling the perplexing structure of the zeolite SSZ-57. Science 333(6046):1134–1137

    CAS  Google Scholar 

  157. Smeets S, McCusker LB, Baerlocher C, Xie D, Chen CY, Zones SI (2015) SSZ-87: a borosilicate zeolite with unusually flexible 10-ring pore openings. J Am Chem Soc 137:2015–2020

    CAS  Google Scholar 

  158. Weitkamp J, Puppe L (1999) Catalysis and zeolites—fundamentals and applications. Springer, Berlin

    Google Scholar 

  159. Hsu CS, Robinson PR (2006) Practical advances in petroleum processing, vol 1. Springer, New York

    Google Scholar 

  160. Maesen T (2007) The zeolite scene—an overview. In: Čejka J, van Bekkum H, Corma A, Schüth F (eds) Introduction to zeolite science and practice, 3rd edn, studies in surface science and catalysis, vol 168. Elsevier, Amsterdam, pp 1–12

  161. Weitkamp J, Hunger M (2007) Acid and base catalysis on zeolites. In: Čejka J, van Bekkum H, Corma A, Schüth F (eds) Introduction to zeolite science and practice, 3rd edn, studies in surface science and catalysis, vol 168. Elsevier, Amsterdam, pp 787–835

  162. Rigutto MS, van Veen R, Huve L (2007) Zeolites in hydrocarbon processing. In: Čejka J, van Bekkum H, Corma A, Schüth F (eds) Introduction to zeolite science and practice, 3rd edn, studies in surface science and catalysis, vol 168. Elsevier, Amsterdam, pp 855-913

  163. Taramasso M, Perego G, Notari B Molecular Sieve Borosilicates. In: Rees LV (ed) 5th international conference zeolite, London, 1980. Hyyden, pp 40–48

  164. Klotz MR (1981) Crystalline borosilicate and process of preparation. US Patent 4,269,813

  165. Chen CY, Rainis A, Zones SI (1997) Reforming with novel borosilicate molecular sieve catalysts. In: Lednor PW, Ledoux MJ, Nagaki DA, Thompson LT (eds) Mater Res Soc Symp—Advanced Catalytic Materials, 1996. Material Research Society

  166. Chen CY, Zones SI (2001) Reforming of FCC heavy gasoline and LCO with novel borosilicate zeolite catalysts. In: Galarneau A, Di Renzo F, Fajula F, Vedrine J (eds) Zeolites and mesoporous materials at the dawn of the 21st century, studies in surface science and catalysis, vol 135. Elsevier, Amsterdam, pp 159–166

  167. Li HX, Annen MJ, Chen CY, Arhancet JP, Davis ME (1991) Dealumination of hexagonal polytype of faujasite by treatments with silicon tetrachloride vapor. J Mater Chem 1(1):79–85

    CAS  Google Scholar 

  168. Weitkamp J, Ernst S, Jacobs PA, Karge HG (1986) ZSM-type and related zeolite catalysts in the disproportionation of ethylbenzene. Erdöl-Kohle-Erdgas 39:13–18

    CAS  Google Scholar 

  169. Chen CY, Finger LW, Medrud RC, Kibby CL, Crozier PA, Chan IY, Harris TV, Beck LW, Zones SI (1998) Synthesis, structure, and physicochemical and catalytic characterization of the novel high-silica large-pore zeolite SSZ-42. Chem Eur J 4(7):1312–1323

    CAS  Google Scholar 

  170. Weitkamp J, Ernst S, Kumar R (1986) The spaciousness index—a novel test reaction for characterizing the effective pore width of bifunctional zeolite catalysts. Appl Catal 27(1):207–210

    CAS  Google Scholar 

  171. Weitkamp J, Ernst S, Chen CY (1989) The spaciousness index: a useful catalytic method for probing the effective pore width of molecular sieves. In: Jansen JC, Moscou L, Post MFM (eds) Zeolites: facts, figures, future, proceedings of 8th international zeolite conference, studies in surface science and catalysis, vol 49. Elsevier, Amsterdam, pp 1115–1129

  172. Chen CY, Ouyang X, Zones SI, Banach SA, Elomari SA, Davis TM, Ojo AF (2012) Characterization of shape selective properties of zeolites via hydroisomerization of n-hexane. Micropor Mesopor Mater 164:71–81

    CAS  Google Scholar 

  173. Chen CY, Zones SI (2007) Characterization of zeolites via vapor phase physisorption of hydrocarbons. Micropor Mesopor Mater 104(1–3):39–45

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert Koller.

Additional information

Dedicated to Prof. Mark E. Davis on the occasion of the Gábor A. Somorjai Award 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koller, H., Chen, CY. & Zones, S.I. Selectivities in Post-Synthetic Modification of Borosilicate Zeolites. Top Catal 58, 451–479 (2015). https://doi.org/10.1007/s11244-015-0382-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0382-0

Keywords

Navigation