Skip to main content
Log in

Adsorption and Diffusion of 4d and 5d Transition Metal Adatoms on Graphene/Ru(0001) and the Implications for Cluster Nucleation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

To explore the possibility of using the graphene moiré superstructure formed on Ru(0001) (g/Ru(0001)) as a template to self-assemble super-lattices of metal nanoparticles as model catalysts, it is desirable to know the minimum-energy adsorption sites, adsorption energies, and diffusion properties of small metal species on this surface. Toward that end, density functional theory calculations have been carried out to investigate the adsorption and diffusion of 18 4d (Y–Ag) and 5d (La–Au) transition metal adatoms on g/Ru(0001), using small surface models representing different regions of the g/Ru(0001) surface. For each adatom, adsorption is the strongest in the fcc region and the weakest in the mound region of the moiré. Diffusion within the fcc region is facile for most adatoms, but an additional barrier is imposed by the corrugation of the graphene moiré for traversing between neighboring fcc regions. Overall, the earlier 4d and 5d metal adatoms have stronger adsorption energies and higher diffusion barriers on g/Ru(0001) than the later ones. The results are then interpreted to provide a better understanding of the conditions necessary to achieve dense super-lattices of monodisperse metal clusters on g/Ru(0001).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aiken JD, Finke RG (1999) J Mol Catal A-Chem 145:1

    Article  CAS  Google Scholar 

  2. Wilcoxon JP, Abrams BL (2006) Chem Soc Rev 35:1162

    Article  CAS  Google Scholar 

  3. Heiz U, Sanchez A, Abbet S, Schneider WD (2000) Chem Phys 262:189

    Article  CAS  Google Scholar 

  4. Argo AM, Gates BC (2003) J Phys Chem B 107:5519

    Article  CAS  Google Scholar 

  5. Lee S, Fan C, Wu T, Anderson SL (2004) J Am Chem Soc 126:5682

    Article  CAS  Google Scholar 

  6. Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA, Ballentine GA, Elam JW, Catillon-Mucherie S, Redfern PC, Mehmood F, Zapol P (2009) Nat Mater 8:213

    Article  CAS  Google Scholar 

  7. Gates BC (1995) Chem Rev 95:511

    Article  CAS  Google Scholar 

  8. Abbet S, Judai K, Klinger L, Heiz U (2002) Pure Appl Chem 74:1527

    Article  CAS  Google Scholar 

  9. Liu L, Zhou Z, Guo Q, Yan Z, Yao Y, Goodman DW (2011) Surf Sci 605:L47

    Article  CAS  Google Scholar 

  10. Becker C, Wandelt K (2009) Top Curr Chem 287:45

    Article  CAS  Google Scholar 

  11. Buchsbaum A, De Santis M, Tolentino HCN, Schmid M, Varga P (2010) Phys Rev B 81:115420

    Article  Google Scholar 

  12. Uhl A, Lei Y, Khosravian H, Becker C, Wandelt K, Adams RD, Trenary M, Meyer RJ (2010) J Phys Chem C 114:17062

    Article  CAS  Google Scholar 

  13. Nilius N, Rienks EDL, Rust HP, Freund HJ (2005) Phys Rev Lett 95:066101

    Article  Google Scholar 

  14. Brihuega I, Michaelis CH, Zhang J, Bose S, Sessi V, Honolka J, Schneider MA, Enders A, Kern K (2008) Surf Sci 602:L95

    Article  CAS  Google Scholar 

  15. N’Diaye AT, Bleikamp S, Feibelman PJ, Michely T (2006) Phys Rev Lett 97:215501

    Article  Google Scholar 

  16. N’Diaye AT, Gerber T, Busse C, Myslivecek J, Coraux J, Michely T (2009) New J Phys 11:103045

    Article  Google Scholar 

  17. Li J-L, Jia J-F, Liang X-J, Liu X, Wang J-Z, Xue Q-K, Li Z-Q, Tse JS, Zhang Z, Zhang SB (2002) Phys Rev Lett 88:066101

    Article  Google Scholar 

  18. Fonin M, Dedkov YS, Rudiger U, Guntherodt G (2003) Surf Sci 529:L275

    Article  CAS  Google Scholar 

  19. Lauritsen JV, Kibsgaard J, Helveg S, Topsoe H, Clausen BS, Laegsgaard E, Besenbacher F (2007) Nat Nanotechnol 2:53

    Article  CAS  Google Scholar 

  20. Geim AK (2009) Science 324:1530

    Article  CAS  Google Scholar 

  21. Wintterlin J, Bocquet ML (2009) Surf Sci 603:1841

    Article  CAS  Google Scholar 

  22. Eom D, Prezzi D, Rim KT, Zhou H, Lefenfeld M, Xiao S, Nuckolls C, Hybertsen MS, Heinz TF, Flynn GW (2009) Nano Lett 9:2844

    Article  CAS  Google Scholar 

  23. Gamo Y, Nagashima A, Wakabayashi M, Terai M, Oshima C (1997) Surf Sci 374:61

    Article  CAS  Google Scholar 

  24. Weser M, Rehder Y, Horn K, Sicot M, Fonin M, Preobrajenski AB, Voloshina EN, Goering E, Dedkov YS (2010) Appl Phys Lett 96:012504

    Article  Google Scholar 

  25. Wu M-C, Xu Q, Goodman DW (1994) J Phys Chem 98:5104

    Article  CAS  Google Scholar 

  26. Marchini S, Gunther S, Wintterlin J (2007) Phys Rev B 76:075429

    Article  Google Scholar 

  27. Pan Y, Shi DX, Gao HJ (2007) Chin Phys 16:3151

    Article  Google Scholar 

  28. Martoccia D, Willmott PR, Brugger T, Bjorck M, Gunther S, Schleputz CM, Cervellino A, Pauli SA, Patterson BD, Marchini S, Wintterlin J, Moritz W, Greber T (2008) Phys Rev Lett 101:126102

    Article  CAS  Google Scholar 

  29. Moritz W, Wang B, Bocquet ML, Brugger T, Greber T, Wintterlin J, Gunther S (2010) Phys Rev Lett 104:136102

    Article  CAS  Google Scholar 

  30. Zhang H, Fu Q, Cui Y, Tan DL, Bao XH (2009) J Phys Chem C 113:8296

    Article  CAS  Google Scholar 

  31. Zhou Z, Gao F, Goodman DW (2010) Surf Sci 604:L31

    Article  CAS  Google Scholar 

  32. Sicot M, Bouvron S, Zander O, Rudiger U, Dedkov YS, Fonin M (2010) Appl Phys Lett 96:093115

    Article  Google Scholar 

  33. Coraux J, N’Diaye AT, Busse C, Michely T (2008) Nano Lett 8:565

    Article  CAS  Google Scholar 

  34. Coraux J, N’Diaye AT, Engler M, Busse C, Wall D, Buckanie N, Heringdorf F, van Gastei R, Poelsema B, Michely T (2009) New J Phys 11:023006

    Article  Google Scholar 

  35. N’Diaye AT, Coraux J, Plasa TN, Busse C, Michely T (2008) New J Phys 10:043033

    Article  Google Scholar 

  36. Gao J-H, Ishida N, Scott I, Fujita D (2012) Carbon 50:1674

    Article  CAS  Google Scholar 

  37. Kwon S-Y, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S (2009) Nano Lett 9:3985

    Article  CAS  Google Scholar 

  38. Chen X, Liu S, Liu L, Liu X, Liu X, Wang L (2012) Appl Phys Lett 100:163106

    Article  Google Scholar 

  39. Kim W, Yoo K, Seo EK, Kim SJ, Hwang C (2011) J Korean Phys Soc 59:71

    Article  CAS  Google Scholar 

  40. Land TA, Michely T, Behm RJ, Hemminger JC, Comsa G (1992) Surf Sci 264:261

    Article  CAS  Google Scholar 

  41. Sutter PW, Flege JI, Sutter EA (2008) Nat Mater 7:406

    Article  CAS  Google Scholar 

  42. Borca B, Calleja F, Hinarejos JJ, de Parga ALV, Miranda R (2009) J Phys-Condens Matter 21:134002

    Article  CAS  Google Scholar 

  43. Vázquez de Parga AL, Calleja F, Borca B, Passeggi MCG, Hinarejos JJ, Guinea F, Miranda R (2008) Phys Rev Lett 100:056807

  44. Katsiev K, Losovyj Y, Zhou Z, Vescovo E, Liu L, Dowben PA, Goodman DW (2012) Phys Rev B 85:195405

    Article  Google Scholar 

  45. Xu Y, Semidey-Flecha L, Liu L, Zhou Z, Goodman DW (2011) Faraday Discuss 152:267

    Article  CAS  Google Scholar 

  46. Jiang DE, Du MH, Dai S (2009) J Chem Phys 130:074705

    Article  Google Scholar 

  47. Brugger T, Gunther S, Wang B, Dil JH, Bocquet ML, Osterwalder J, Wintterlin J, Greber T (2009) Phys Rev B 79:045407

    Article  Google Scholar 

  48. Wang B, Bocquet ML, Marchini S, Gunther S, Wintterlin J (2008) Phys Chem Chem Phys 10:3530

    Article  CAS  Google Scholar 

  49. Preobrajenski AB, Ng ML, Vinogradov AS, Martensson N (2008) Phys Rev B 78:073401

    Article  Google Scholar 

  50. Zhou Z, Habenicht BF, Guo Q, Yan Z, Xu Y, Liu L, Goodman DW (2013) Surf Sci 611:67

    Article  CAS  Google Scholar 

  51. Huang L, Pan Y, Pan L, Gao M, Xu W, Que Y, Zhou H, Wang Y, Du S, Gao HJ (2011) Appl Phys Lett 99:163107

    Article  Google Scholar 

  52. Engstfeld AK, Beckord S, Lorenz CD, Behm RJ (2012) ChemPhysChem 13:3313

    Article  CAS  Google Scholar 

  53. Addou R, Dahal A, Batzill M (2012) Surf Sci 606:1108

    Article  CAS  Google Scholar 

  54. Subrahmanyam KS, Manna AK, Pati SK, Rao CNR (2010) Chem Phys Lett 497:70

    Article  CAS  Google Scholar 

  55. Zhou M, Zhang A, Dai Z, Feng YP, Zhang C (2010) J Phys Chem C 114:16541

    Article  CAS  Google Scholar 

  56. Lim D-H, Negreira AS, Wilcox J (2011) J Phys Chem C 115:8961

    Article  CAS  Google Scholar 

  57. Liu X, Wang CZ, Hupalo M, Lu WC, Tringides MC, Yao YX, Ho KM (2012) Phys Chem Chem Phys 14:9157

    Article  CAS  Google Scholar 

  58. Pan Y, Gao M, Huang L, Liu F, Gao HJ (2009) Appl Phys Lett 95:093106

    Article  Google Scholar 

  59. Donner K, Jakob P (2009) J Chem Phys 131:164701

    Article  Google Scholar 

  60. Sutter E, Albrecht P, Wang B, Bocquet ML, Wu LJ, Zhu YM, Sutter P (2011) Surf Sci 605:1676

    Article  CAS  Google Scholar 

  61. Gyamfi M, Eelbo T, Waśniowska M, Wiesendanger R (2011) Phys Rev B 84:113403

    Article  Google Scholar 

  62. Wang B, Yoon B, König M, Fukamori Y, Esch F, Heiz U, Landman U (2012) Nano Lett 12:5907

    Article  CAS  Google Scholar 

  63. Starr DE, Pazhetnov EM, Stadnichenko AI, Boronin AI, Shaikhutdinov SK (2006) Surf Sci 600:2688

    Article  CAS  Google Scholar 

  64. Feibelman PJ (2009) Phys Rev B 80:085412

    Article  Google Scholar 

  65. Wang B, Bocquet M-L (2011) J Phys Chem Lett 2:2341

    Article  CAS  Google Scholar 

  66. Sholl DS, Skodje RT (1995) Phys Rev Lett 75:3158

    Article  Google Scholar 

  67. Barth JV (2000) Surf Sci Rep 40:75

    Article  CAS  Google Scholar 

  68. Semidey-Flecha L, Teng D, Habenicht BF, Sholl DS, Xu Y (2013) J Chem Phys 138:184710

    Article  Google Scholar 

  69. Kresse G, Furthmuller J (1996) Comp Mater Sci 6:15

    Article  CAS  Google Scholar 

  70. Kresse G, Furthmuller J (1996) Phys Rev B 54:11169

    Article  CAS  Google Scholar 

  71. Kresse G, Hafner J (1994) Phys Rev B 49:14251

    Article  CAS  Google Scholar 

  72. Perdew JJ, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  Google Scholar 

  73. Blochl PE (1994) Phys Rev B 50:17953

    Article  Google Scholar 

  74. Methfessel M, Paxton AT (1989) Phys Rev B 40:3616

    Article  CAS  Google Scholar 

  75. Chan KT, Neaton JB, Cohen ML (2008) Phys Rev B 77:235430

    Article  Google Scholar 

  76. Hu LB, Hu XR, Wu XB, Du CL, Dai YC, Deng JB (2010) Physica B 405:3337

    Article  CAS  Google Scholar 

  77. Neugebauer J, Scheffler M (1992) Phys Rev B 46:16067

    Article  CAS  Google Scholar 

  78. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901

    Article  CAS  Google Scholar 

  79. Wang B, Gunther S, Wintterlin J, Bocquet ML (2010) New J Phys 12:043041

    Article  Google Scholar 

  80. Yazyev OV, Pasquarello A (2010) Phys Rev B 82:045407

    Article  Google Scholar 

  81. Okazaki-Maeda K, Morikawa Y, Tanaka S, Kohyama M (2010) Surf Sci 604:144

    Article  CAS  Google Scholar 

  82. Varns R, Strange P (2008) J Phys-Condens Mat 20:225005

    Article  Google Scholar 

  83. Valencia H, Gil A, Frapper G (2010) J Phys Chem C 114:14141

    Article  CAS  Google Scholar 

  84. Teng D, Sholl DS (in press) Surf Sci

  85. Nilekar AU, Greeley J, Mavrikakis M (2006) Angew Chem Int Ed 45:7046

    Article  CAS  Google Scholar 

  86. Habenicht BF, Xu Y, Liu L (2013) In: Chen Z, Jiang D (eds) Graphene chemistry: theoretical perspectives, Wiley

Download references

Acknowledgments

We congratulate Prof. Jens K. Nørskov on his 60th birthday, and thank him for the tremendous leadership and inspiration that he has provided to the field of computational catalysis and surface science. This study was supported as part of the Center for Atomic Level Catalyst Design, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, and Office of Basic Energy Sciences under Award Number DE-SC0001058, and used resources of the National Energy Research Scientific Computing Center, which is supported by DOE Office of Science under Contract DE-AC02-05CH11231. Additional computing resources of Oak Ridge National Laboratory and Georgia Institute of Technology were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Xu.

Additional information

Bradley F. Habenicht, Dieh Teng, Lymarie Semidey-Flecha contributed equally to this work.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2461 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habenicht, B.F., Teng, D., Semidey-Flecha, L. et al. Adsorption and Diffusion of 4d and 5d Transition Metal Adatoms on Graphene/Ru(0001) and the Implications for Cluster Nucleation. Top Catal 57, 69–79 (2014). https://doi.org/10.1007/s11244-013-0163-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0163-6

Keywords

Navigation