Skip to main content
Log in

Electrooxidation of d- and l-Glucose at Well-Defined Chiral Bimetallic Electrodes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The electrooxidation of d- and l-glucose at chiral Pt{321}r/s single crystal electrodes modified with Au, Ag and Bi adatoms up to a coverage of one monolayer (ML) is reported. All adatoms investigated are found to selectively decorate kink and step sites. Only at higher coverages is adsorption onto the narrow {111} terrace sites observed for Bi, Ag and Au, consistent with previously reported adsorption behaviour on stepped surfaces vicinal to the {111} plane for chemisorbates exhibiting a lower work function than platinum. However, silver is found to block {111} terrace sites even when Pt step sites are still available on Pt{321}. This behaviour is ascribed to the propensity of silver to undergo place-exchange to form a surface alloy. The selective decoration of chiral kink sites has a profound influence on the voltammetric response of Pt{321} towards glucose electrooxidation. For bismuth adsorption, the electrooxidation current density initially increases and reaches a maximum when bismuth adsorption at {111} terraces commences. This is because the reaction pathways at step/kink sites leading to the formation of adsorbed CO (a surface poison for the clean surface reaction) and other strongly adsorbed intermediates, are either blocked by adsorbed bismuth or their electrooxidation and subsequent removal promoted. Once all step/kink sites are blocked by bismuth, hardly any chiral discrimination can be discerned between r-/s-electrodes towards d-/l-glucose. Silver adsorption does not cause any increase in glucose electrooxidation current density but rather induces a continual attenuation in glucose electrooxidation activity, particular (in contrast to bismuth) electrooxidation current at potentials in excess of 0.35 V. Therefore, unlike for bismuth, the initial glucose adsorption and electrooxidation processes associated with chiral kink sites appear to be preserved even though silver adsorbs at these sites. It is speculated that spontaneous place-exchange of silver with platinum to form a PtAg surface alloy at steps is responsible for this difference in behaviour between silver and bismuth. Finally, gold neither promotes reaction rate nor preserves chiral discrimination and is therefore deduced to act as an inert site blocker (no alloying, no promotion of CO electrooxidation) leading to complete attenuation of glucose electrooxidation current at a coverage of one ML.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Naohara H, Ye S, Uosaki K (1999) J Electroanal Chem 473:2

    Article  CAS  Google Scholar 

  2. Kibler LA, Kleinert M, Kolb DM (2000) Surf Sci 461:155

    Article  CAS  Google Scholar 

  3. Kibler LA, Kleinert M, Lazarescu V, Kolb DM (2002) Surf Sci 498:175

    Article  CAS  Google Scholar 

  4. Kibler LA, Kleinert M, Randler R, Kolb DM (1999) Surf Sci 443:19

    Article  CAS  Google Scholar 

  5. Waibel H-F, Kleinert M, Kibler LA, Kolb DM (2002) Electrochim Acta 47:1461

    Article  CAS  Google Scholar 

  6. Sung Y-E, Chrzanowski W, Wieckowski A, Zolfaghari A, Blais S, Jerkiewicz G (1998) Electrochim Acta 44:1019

    Article  CAS  Google Scholar 

  7. Rhee CK, Wakisaka M, Tolmachev YV, Johnston CM, Haasch R, Attenkofer K, Lu GQ, You H, Wieckowski A (2003) J Electroanal Chem 554:367

    Article  Google Scholar 

  8. Buller LJ, Herrero E, Gomez R, Feliu JM, Abruña HD (1996) J Chem Soc Faraday Trans 92:3757

    Article  CAS  Google Scholar 

  9. Massong H, Tillmann S, Langkau T, Abd El Meguid EA, Baltruschat H (1998) J Electrochem Acta 44:1379

    Article  CAS  Google Scholar 

  10. Maciá MD, Herrero E, Feliu JM (2002) Electrochim Acta 47:3653

    Article  Google Scholar 

  11. Clavilier J, Feliu JM, Aldaz A (1988) J Electroanal Chem 243:419

    Article  CAS  Google Scholar 

  12. Herrero E, Climent V, Feliu JM (2000) Electrochem Commun 2:636

    Article  CAS  Google Scholar 

  13. Michaelson HB (1977) J Appl Phys 48:4729

    Article  CAS  Google Scholar 

  14. Garcia-Araez N, Climent V, Feliu JM (2008) J Am Chem Soc 130:3824

    Article  CAS  Google Scholar 

  15. Morgenstern M, Michely T, Comsa G (1996) Phys Rev Lett 77:703

    Article  CAS  Google Scholar 

  16. Gutiérrez De Dios FJ, Gómez R, Feliu JM (2001) Electrochem Commun 3:659

    Article  Google Scholar 

  17. Lei H-W, Hattori H, Kita H (1996) Electrochim Acta 41:1619

    Article  CAS  Google Scholar 

  18. Yang Y-Y, Sun S-G, Gu Y-J, Zhou Z-Y, Zhen C-H (2001) Electrochim Acta 46:4339

    Article  CAS  Google Scholar 

  19. Herrero E, Fernández-Vega A, Feliu JM, Aldaz A (1993) J Electroanal Chem 350:73

    Article  CAS  Google Scholar 

  20. Janssen MMP, Moolhuysen J (1976) Electrochim Acta 21:861

    Article  CAS  Google Scholar 

  21. Clavilier J, Llorca MJ, Feliu JM, Aldaz A (1991) J Electroanal Chem 310:429

    Article  CAS  Google Scholar 

  22. Hazzazi OA, Attard GA, Wells PB (2004) J Mol Catal A Chem 216:247

    Article  CAS  Google Scholar 

  23. Attard GA, Harris C, Herrero E, Feliu J (2002) Faraday Discuss 121:253

    Article  CAS  Google Scholar 

  24. Watson DJ, Attard GA (2001) Electrochim Acta 46:3157

    Article  CAS  Google Scholar 

  25. Attard GA (2001) J Phys Chem B 105:3158

    Article  CAS  Google Scholar 

  26. Popovic KD, Tripkovic AV, Adzic RR (1992) J Electroanal Chem 339:227

    Article  CAS  Google Scholar 

  27. Beden B, Largeaud F, Kokoh KB, Lamy C (1996) Electrochim Acta 41:701

    Article  CAS  Google Scholar 

  28. Ahmadi A, Attard G, Feliu J, Rodes A (1999) Langmuir 15:2420

    Article  CAS  Google Scholar 

  29. Kokkiniois G, Leger JM, Lamy C (1988) J Electroanal Chem 242:221

    Article  Google Scholar 

  30. Rodes A, Llorca MJ, Feliu JM, Clavilier J (1996) Anal Quim Int Ed 92:118

    CAS  Google Scholar 

  31. Marinkovic NS, Popovic KD, Tripkovic AV, Markovic NM, Adzic RR (1992) Proc Electrochem Soc 92:353

    Google Scholar 

  32. Llorca MJ, Feliu JM, Aldaz A, Clavilier J, Rodes A (1991) J Electroanal Chem 316:175

    Article  CAS  Google Scholar 

  33. Martins A, Ferreira V, Queiros A, Aroso I, Silva F, Feliu J (2003) Electrochem Commun 5:741

    Article  CAS  Google Scholar 

  34. Pratt SJ, Jenkins SJ, King DA (2005) Surf Sci 585:L159

    Article  CAS  Google Scholar 

  35. McFadden CF, Gremer PS, Gellman AJ (1996) Langmuir 12:2483

    Article  CAS  Google Scholar 

  36. Sholl DS (1998) Langmuir 14:862

    Article  CAS  Google Scholar 

  37. Attard GA, Ahmadi A, Feliu J, Rodes A, Herrero E, Blais S, Jerkiewicz G (1999) J Phys Chem B 103:1381

    Article  CAS  Google Scholar 

  38. Clavilier J, Armand D, Sun SG, Petit M (1986) J Electroanal Chem 205:267

    Article  CAS  Google Scholar 

  39. Rodes A, Zamakhchari MA, El Achi K, Clavilier J (1991) J Electroanal Chem 305:115

    Article  CAS  Google Scholar 

  40. Al-Akl A, Attard G, Price R, Timothy B (2001) Phys Chem Chem Phys 3:3261

    Article  CAS  Google Scholar 

  41. Morrison RT, Boyd RN (1973) Organic chemistry, 3rd edn. Allyn and Bacon, M. A., Boston, p 1095

    Google Scholar 

  42. Evans RW, Attard GA (1993) J Electroanal Chem 345:337

    Article  CAS  Google Scholar 

  43. Domke KF, Xiao XY, Baltruschat H (2009) Electrochim Acta 54:4829

    Article  CAS  Google Scholar 

  44. Hazzazi OA (2002) Doctoral Thesis, Cardiff University, UK

  45. Attard GA, Al-Akl A (2003) J Electroanal Chem 554:439

    Article  Google Scholar 

  46. Aberdam D, Salem C, Durand R, Faure R (1990) Surf Sci 239:71

    Article  CAS  Google Scholar 

  47. Batzill M, Koel BE (2004) Surf Sci 553:50

    Article  CAS  Google Scholar 

  48. Batzill M, Koel BE (2003) Europhys Lett 64:70

    Article  CAS  Google Scholar 

  49. Tsay JS, Yao YD, Shern CS (1998) Phys Rev B 58:3609

    Article  CAS  Google Scholar 

  50. Casalis L, Gunther S, Kovac J, Marsi M, Kiskinova M, Bifone A (1998) Chem Phys Lett 290:245

    Article  CAS  Google Scholar 

  51. Tsay JS, Shern CS (1996) Chin J Phys 34:130

    CAS  Google Scholar 

  52. Vaskevich A, Rosenblum M, Gileadi E (1995) J Electroanal Chem 383:167

    Article  Google Scholar 

  53. Hazzazi OA, Attard GA, Wells PB, Vidal-Iglesias FJ, Casadesus M (2009) J Electroanal Chem 625:123

    Article  CAS  Google Scholar 

  54. Clavilier J, Orts JM, Gomez R, Feliu JM, Aldaz A (1996) J Electroanal Chem 404:281

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the EPSRC for financial support. Omar A. Hazzazi expresses his thanks to the Saudi Arabian Government for financial support. GAA acknowledges the help of Sharon Huxter in the preparation of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary A. Attard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hazzazi, O.A., Harris, C.A., Wells, P.B. et al. Electrooxidation of d- and l-Glucose at Well-Defined Chiral Bimetallic Electrodes. Top Catal 54, 1392–1402 (2011). https://doi.org/10.1007/s11244-011-9766-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9766-y

Keywords

Navigation