Skip to main content
Log in

Cation Vacant Fe3−xy V x y O4 Spinel-Type Catalysts for the Oxidation of Methanol to Formaldehyde

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The potential of Fe–V-oxide catalysts for use in methanol oxidation is explored. Our results show that although FeVO4 is active and selective for formaldehyde (FA) formation, it is not completely stable towards volatilization under reaction conditions. Attempts to stabilize Fe–V-oxide were made using titania, alumina and silica supports. However, we observe that although some stabilization is achieved using titania and alumina, the supported catalysts are sensitive to volatilization considering the relatively low content of active oxide. Compared with supported V-oxide, the results show that iron causes stabilization of vanadium decreasing its volatility. Considering the observation that the neat FeVO4 restructures to form a spinel-type phase under influence of the catalysis, we prepared a series of cation vacant spinel-type Fe3−xy V x y O4 catalysts with various V/Fe ratio and consequent number of cation vacancies □. Opposed to the activity, which is rather constant irrespectively of the vanadium content, the selectivity to FA passes through a maximum of about 90% for Fe/V = 14. A spinel-type phase with the composition Fe2.62V0.190.20O4 was prepared and subsequently preoxidized to different degree. It is observed that the spinel-type structure is stable and that the oxidation of vanadium and iron is balanced by an increasing number of cation vacancies. Moreover, irrespectively of the original degree of preoxidation, it is found that in methanol oxidation a steady state is reached where all samples are equally active and selective and have the same composition both in the bulk and at the surface. The results clearly demonstrate that the spinel-type catalysts are phase-stable, nonvolatile and flexible in that the cations can change oxidation state retaining the same basic structure type and Fe/V ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Reuss G, Disteldorf W, Gamer AO, Hilt A (2008) In: Ullmann’s encyclopedia of industrial chemistry, 7th edn, vol A11. Wiley-VCH, Weinheim, pp 619–652

  2. Crichton B In: Informally speaking (newsletter from Perstorp Formox), spring/summer 2006, pp 2–8. http://www.perstorpformox.com

  3. Crichton B In: Informally speaking (newsletter from Perstorp Formox), autumn/winter 2009, pp 4–5. http://www.perstorpformox.com

  4. Crichton B In: Informally speaking (newsletter from Perstorp Formox), spring/summer 2003, pp 12–13. http://www.perstorpformox.com

  5. Häggblad R, Massa M, Andersson A (2009) J Catal 266:218

    Article  Google Scholar 

  6. Söderhjelm E, House MP, Cruise N, Holmberg J, Bowker M, Bovin J-O, Andersson A (2008) Top Catal 50:145

    Article  Google Scholar 

  7. Burriesci N, Garbassi F, Petrera M, Petrini G, Pernicone N (1980) In: Delmon B, Froment GF (eds) Catalyst deactivation. Studies in Surface Science and Catalysis, vol 6. Elsevier, Amsterdam, pp 115–126

  8. Andersson A, Hernelind M, Augustsson O (2006) Catal Today 112:40

    Article  CAS  Google Scholar 

  9. Popov BI, Bibin VN, Boreskov GK (1976) Kinet Katal 17:371

    CAS  Google Scholar 

  10. Forzatti P, Tronconi E, Elmi AS, Busca G (1997) Appl Catal A 157:387

    Article  CAS  Google Scholar 

  11. Maliński R (1976) React Kinet Catal Lett 5:265

    Article  Google Scholar 

  12. Maliński R, Akimoto M, Echigoya E (1976) J Catal 44:101

    Article  Google Scholar 

  13. Deo G, Wachs IE (1994) J Catal 146:323

    Article  CAS  Google Scholar 

  14. Briand LE, Jehng J-M, Cornaglia L, Hirt AM, Wachs IE (2003) Catal Today 78:257

    Article  CAS  Google Scholar 

  15. Isaguliants GV, Belomestnykh IP (2005) Catal Today 100:441

    Article  CAS  Google Scholar 

  16. Kim T, Wachs IE (2008) J Catal 255:197

  17. Häggblad R, Wagner JB, Hansen S, Andersson A (2008) J Catal 258:345

    Article  Google Scholar 

  18. Zhang H, Liu Z, Feng Z, Li C (2008) J Catal 260:295

    Article  CAS  Google Scholar 

  19. Aymes D, Millot N, Nivoix V, Perriat P, Gillot B (1997) Solid State Ionics 101–103:261

    Google Scholar 

  20. Wachs IE, Briand LE (2007) US Patent 7 193 117 B2, assigned to Lehigh University, Bethlehem, PA (US)

  21. Rogers DB, Arnott RJ, Wold A, Goodenough JB (1963) J Phys Chem Solids 24:347

    Article  CAS  Google Scholar 

  22. Wakihara M, Shimizu Y, Katsura T (1971) J Solid State Chem 3:478

    Article  CAS  Google Scholar 

  23. Nivoix V, Gillot B (1998) Solid State Ionics 111:17

    Article  CAS  Google Scholar 

  24. Gillot B, Nivoix V (1999) Mater Res Bull 34:1735

    Article  CAS  Google Scholar 

  25. Gillot B, Nohair M (1999) Phys Status Solidi A 176:1047

    Article  CAS  Google Scholar 

  26. Nivoix V, Gillot B (2000) Chem Mater 12:2971

    Article  CAS  Google Scholar 

  27. Nivoix V, Gillot B (2000) Mater Chem Phys 63:24

    Article  CAS  Google Scholar 

  28. Fleet ME (1981) Acta Crystalogr B37:917

    CAS  Google Scholar 

  29. Somogyvári Z, Sváb E, Mészáros G, Krezhov K, Nedkov I, Sajó I, Bourée F (2002) Appl Phys A74(Supplement 1):S1077

    Google Scholar 

  30. Häggblad R, Hansen S, Wallenberg LR, Andersson A (2010) J Catal 276:24

    Google Scholar 

  31. Callahan JL, Grasselli RK (1963) AIChE J 9:755

    Article  CAS  Google Scholar 

  32. Giuli G, Paris E, Mungall J, Romano C, Dingwell D (2004) Am Mineral 89:1640

    CAS  Google Scholar 

  33. Chaurand P, Rose J, Briois V, Salome M, Proux O, Nassif V, Olivi L, Susini J, Hazemann J-L, Bottero J-Y (2007) J Phys Chem B 111:5101

    Article  CAS  Google Scholar 

  34. Safonova OV, Florea M, Bilde J, Delichere P, Millet JMM (2009) J Catal 268:156

    Article  CAS  Google Scholar 

  35. Wong J, Lytle FW, Messmer RP, Maylotte DH (1984) Phys Rev B 30:5596

    Article  CAS  Google Scholar 

  36. Andersson SLT, Järås S (1980) J Catal 64:51

    Article  CAS  Google Scholar 

  37. O’Mahony L, Curtin T, Zemlyanov D, Mihov M, Hodnett BK (2004) J Catal 227:270

    Article  Google Scholar 

  38. Baba Ali E, Bernède JC, Barreau A (2000) Mater Chem Phys 63:208

    Article  Google Scholar 

  39. Asami K, Hashimoto K (1977) Corros Sci 17:559

    Article  CAS  Google Scholar 

  40. Sejrbo Nielsen C, Knudsen N (2004) Chem Eng 757:26

    Google Scholar 

Download references

Acknowledgments

The Swedish Research Council (VR) is acknowledged for financial support. Parts of the research were carried out at beamline I811, MAX-lab synchrotron radiation source, Lund University, Sweden. Funding for the beamline I811 project was kindly provided by The Swedish Research Council and The Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano Massa.

Additional information

This work is dedicated to Professor Robert K. Grasselli on the occasion of his 80th birthday in appreciation of his contribution to oxidation catalysis on multicomponent oxides and he learning us about the active ensemble and the importance of site isolation and phase cooperation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massa, M., Häggblad, R. & Andersson, A. Cation Vacant Fe3−xy V x y O4 Spinel-Type Catalysts for the Oxidation of Methanol to Formaldehyde. Top Catal 54, 685–697 (2011). https://doi.org/10.1007/s11244-011-9690-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9690-1

Keywords

Navigation