Skip to main content
Log in

The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Polycyclic Aromatic Hydrocarbons (PAHs) are a group of Volatile Organic Compounds (VOCs), which have serious health problems associated with their emission into the atmosphere. Catalytic oxidation is an effective abatement process to control PAH emissions, and the types of catalysts investigated have been reviewed. The majority of studies have used naphthalene as a model PAH, and in particular, catalysts containing palladium and platinum have demonstrated high activity for total oxidation. Catalysts based on the precious metals include those supported on high surface area supports, which have also been modified by adding further components, and metal exchanged zeolites. Metal oxide catalysts have also been employed and the most active for total oxidation are ceria-based. Studies of PAH total oxidation have largely been reported only in the last 10 years, and there still remains wide scope to develop improved catalysts and understand their catalytic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Zhang XW, Shen SC, Yu LE, Kawi S, Hidajat K, Simon Ng KY (2003) Appl Catal A Gen 250:341

    Article  CAS  Google Scholar 

  2. Ho KF, Lee SC (2002) Sci Total Environ 289:145

    Article  CAS  Google Scholar 

  3. US EPA, Health and Environmental Effects Profile for Naphthalene (EPA/600/x-86/241)

  4. US EPA, Toxicology Review of Naphthalene

  5. Agency for Toxic Substances, Disease Registry (ATSDR) (1995) Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). Atlanta, GA, USa. Department of Health and Human Services, Public Health Service

    Google Scholar 

  6. Illinois Department of Public Health, Division of Environmental Health, Polycyclic Aromatic Hydrocarbons (PAHs), 525 W. Jefferson St. Springfield, IL 62761

  7. Finlayson-Pitts BJ, Pitts JN Jr (1999) Chemistry of the upper and lower atmosphere, 1st edn. Academic Press, London, pp 436–526

    Google Scholar 

  8. Neyestanaki AK, Lindfors L-E (1998) Fuel 77:1727

    Article  CAS  Google Scholar 

  9. Neyestanaki AK, Lindfors L-E, Ollonqvist T, Vayrynen J (2000) Appl Catal A Gen 196:233

    Article  Google Scholar 

  10. Chen G, Strevett KA, Vanegas BA (2001) Biodegradation 12:433

    Article  CAS  Google Scholar 

  11. Cooper W, Nickelsen MG, Green RV, Mezyk SP (2002) Radiat Phys Chem 65:571

    Article  CAS  Google Scholar 

  12. Legube B, Guyon S, Sugimitsu H, Dore M (1986) Water Res 20:197

    Article  CAS  Google Scholar 

  13. Lee SY, Kim SJ (2002) Appl Clay Sci 22:55

    Article  CAS  Google Scholar 

  14. Huang HL, Lee WM (2002) J Environ Eng (ASCE) 128:60

    Article  CAS  Google Scholar 

  15. US, EPA, Air Pollution Control Technology Fact Sheet (EPA-452/F-03-022)

  16. Zhang XW, Shen SC, Hidajat K, Kawi S, Yu LE, Simon Ng KY (2004) Catal Lett 96:87

    Article  CAS  Google Scholar 

  17. Ferrandon M, Bjornbom E (2001) J Catal 200:148

    Article  CAS  Google Scholar 

  18. Carno J, Berg M, Järås S (1996) Fuel 75:959

    Article  Google Scholar 

  19. Klingstedt F, Neyestanaki AK, Lindfors L-E, Salmi T, Heikkila T, Laine E (2002) Appl Catal A Gen 6210:1

    Google Scholar 

  20. Ntainjua N. E, Garcia NT, Taylor SH (2006) Catal Lett 110:125

    Article  Google Scholar 

  21. Shie JL, Chang CY, Chen JH, Tsai WT, Chen YH, Chiou CS, Chang CF (2005) Appl Catal B Environ 56:289

    Article  Google Scholar 

  22. Musialik-Piotrowska A, Syczewska K, Mendyka B (1998) Environ Prot Eng 24:123

    CAS  Google Scholar 

  23. Ntainjua N. E, Carley NAF, Taylor SH (2008) Catal Today 137:362

    Article  Google Scholar 

  24. Garcia T, Solsona B, Taylor SH (2005) Catal Lett 105:183

    Article  CAS  Google Scholar 

  25. Garcia T, Solsona B, Taylor SH (2006) Appl Catal B Environ 66:92

    Article  CAS  Google Scholar 

  26. Ntainjua N. E, Garcia NT, Solsona B, Taylor SH (2007) Appl Catal B Environ 76:248

    Article  Google Scholar 

  27. Weber R, Sakurai T, Hagenmaier H (1999) Appl Catal B Environ 20:249

    Article  CAS  Google Scholar 

  28. Garcia T, Solsona B, Cazorla-Amoros D, Linares-Solano A, Taylor SH (2006) Appl Catal B Environ 62:66

    Article  CAS  Google Scholar 

  29. Bosch H, Janssen F (1988) Catal Today 2:369

    Article  CAS  Google Scholar 

  30. Ntainjua N. E, Garcia N,T, Solsona B, Taylor SH (2008) Catalysis Today 137:373

    Article  Google Scholar 

  31. Isogai Y, Tanaami K, Onodera M, Naka T (2007) US Patent 20070191218, 16th August, 2007

  32. Spinicci R, Tofanari A (2002) Appl Catal A 227:159

    Article  CAS  Google Scholar 

  33. Müller CA, Maciejewsky M, Koeppel RA, Baiker A (1999) Catal Today 47:245

    Article  Google Scholar 

  34. Sekizawa K, Widjaja H, Maeda S, Ozawa Y, Eguchi K (2000) Catal Today 59:69

    Article  CAS  Google Scholar 

  35. Waiwright MS, Foster NR (1979) Catal Rev 19:211

    Article  Google Scholar 

  36. Bampenrat A, Meeyoo V, Kitiyanan B, Rangsunvigit P, Rirksomboon T (2008) Catal Commun 9:2349

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart H. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntainjua N., E., Taylor, S.H. The Catalytic Total Oxidation of Polycyclic Aromatic Hydrocarbons. Top Catal 52, 528–541 (2009). https://doi.org/10.1007/s11244-009-9180-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9180-x

Keywords

Navigation