Skip to main content
Log in

Detailed mechanistic study on ligand substitution reactions in dinuclear platinum(II) complexes: effect of alkanediamine linker

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Substitution of the coordinated water ligands from the cis-[{Pt(NH3)2H2O}2-μ-NH2(CH2) n NH2]4+ (n = 2–4, 6, 8, 10) complexes: EnPt, PropPt, ButPt, HexPt, OctPt and DecPt with S-donor nucleophiles thiourea, N,N-dimethyl-2-thiourea and N,N,N,N-tetramethyl-2-thiourea was studied under pseudo-first-order conditions as a function of concentration and temperature, using stopped-flow and UV–Vis Spectrophotometric techniques. The substitution reaction proceeded in two steps: simultaneous substitution of the aqua ligands, followed by the displacement of the ammine ligands in the trans-position due to the strong trans-effect of the coordinated thiourea nucleophiles, with each of the steps being sensitive to steric and σ-electronic properties of the alkanediamine linker. A comparison of the second-order rate constants, k 2,1st and k 2,2nd, indicates that the rate constants of the first step are 1–2 orders larger than those of the second step in all cases. The large negative ΔS values support an associative mode of substitution mechanism for both reaction steps. 1H and 195Pt NMR spectroscopy established that the α,ω-alkanediamine linkers remained coordinated to the metal centres, possibly due to their cis geometry to the incoming thiourea nucleophiles.

Graphical Abstract

The lability of aqua ligands of cis-[{Pt(NH3)2H2O}2-μ-NH2(CH2) n NH2]4+ (n = 2–10) complexes decreased from EnPt to DecPt, due to lower electrophilicity of the platinum centre caused by σ-donor effect of the (CH2) n units and to steric constraints of coordinated thiourea ligands. The experimental results are supported by density function theory (DFT) at the B3LYP/LACVP** level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Caution: Metal perchlorate complexes and perchloric acid are potentially explosive. They should be handled with care, and the complexes should be prepared in small quantities

References

  1. Rosenberg B, Van Camp L, Trosko JE, Mansour VH (1969) Nature 222:385

    Article  CAS  Google Scholar 

  2. Fuertes MA, Alonso C, Perez JM (2003) Chem Rev 103:645

    Article  CAS  Google Scholar 

  3. Wang D, Lippard SJ (2005) Nat Rev Drug Discov 4:307

    Article  CAS  Google Scholar 

  4. van Zutphen S, Reedijk J (2005) Coord Chem Rev 24:2845

    Article  CAS  Google Scholar 

  5. Wong E, Giandomenico CM (1999) Chem Rev 99:2451

    Article  CAS  Google Scholar 

  6. Oliver RTD (2001) Curr Opin Oncol 13:191

    Article  CAS  Google Scholar 

  7. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467

    Article  CAS  Google Scholar 

  8. Reedijk J (1999) Chem Rev 99:2499

    Article  CAS  Google Scholar 

  9. Dyson PJ, Sava G (2006) Dalton Trans 1929

  10. Abu-Surrah AS, Kettunen M (2006) Curr Med Chem 13:1337

    Article  CAS  Google Scholar 

  11. Kelland LR (2007) Nat Rev Cancer 7:573

    Article  CAS  Google Scholar 

  12. Reedijk J (2009) Eur J Inorg Chem 2009:1303

  13. Soldatović T, Bugarčić ŽD, van Eldik R (2009) Dalton Trans 4526

  14. Hall MD, Hambley TW (2002) Coord Chem Rev 232:49

    Article  CAS  Google Scholar 

  15. Zhang CX, Lippard SJ (2003) Curr Opin Chem Biol 7:481

    Article  CAS  Google Scholar 

  16. Ertürk H, Puchta R, van Eldik R (2009) Eur J Inorg Chem 2009:1331

  17. Fan D, Yang X, Wang X, Zhang S, Mao J, Ding J, Lin L, Guo Z (2007) J Biol Inorg Chem 12:655 (and references therein)

    Article  CAS  Google Scholar 

  18. Farrell N (1995) Comm Inorg Chem 16(6):373

    Article  CAS  Google Scholar 

  19. Wheate NJ, Collins JG (2003) Coord Chem Rev 241:133

    Article  CAS  Google Scholar 

  20. Kalayda GV, Komeda S, Ikeda K, Sato T, Chikuma M, Reedijk J (2003) Eur J Inorg Chem 24:4347

    Google Scholar 

  21. Komeda S, Kalayda GV, Lutz M, Spek AL, Sato T, Chikuma M, Reedijk J (2003) J Med Chem 46:1210

    Article  CAS  Google Scholar 

  22. Wheate NJ, Cullinane C, Webster LK, Collins JG (2001) Anti-Cancer Drug Des 16:91

    CAS  Google Scholar 

  23. Colella G, Pennati M, Bearzatto A, Leone R, Colangelo D, Manzotti C (2001) Br J Cancer 84:1387

    Article  CAS  Google Scholar 

  24. Jodrell DI, Evans TRJ, Steward W, Cameron D, Prendiville J, Aschele C (2004) Eur J Cancer 40:1872

    Article  CAS  Google Scholar 

  25. Harris AL, Yang X, Hegmans A, Povirk L, Ryan JJ, Kelland L, Farrell NP (2005) Inorg Chem 44:9598

    Article  CAS  Google Scholar 

  26. Kasparkova J, Farrell N, Brabec V (2000) J Biol Chem 275:15789

    Article  CAS  Google Scholar 

  27. Ali MS, Whitmire KH, Toyomasi T, Siddik ZH, Khokhar AR (1999) J Inorg Biochem 77:231

    Article  CAS  Google Scholar 

  28. Cox JW, Berners-Price SJ, Davies MS, Barlage W, Qu Y, Farrell N (2000) Inorg Chem 39:1710

    Article  CAS  Google Scholar 

  29. Jaganyi D, Munisamy VM, Reddy D (2006) Int J Chem Kinet 38:202

    Article  CAS  Google Scholar 

  30. Hofmann A, van Eldik R (2003) J Chem Soc Dalton Trans 2979

  31. Mambanda A, Jaganyi D, Hochreuther S, van Eldik R (2010) Dalton Trans 39:3595

    Article  CAS  Google Scholar 

  32. Ertürk H, Hofmann A, Puchta R, van Eldik R (2007) Dalton Trans 2295

  33. Oehlsen ME, Qu Y, Farrell N (2003) Inorg Chem 42:5498

    Article  CAS  Google Scholar 

  34. Montero EI, Zhang J, Moniodis JJ, Berners-Price SJ, Farrell NP (2010) Chem Eur J 16:9175

    Article  CAS  Google Scholar 

  35. Summa N, Maigut J, Puchta R, van Eldik R (2007) Inorg Chem 46:2094

    Article  CAS  Google Scholar 

  36. Oehlsen M, Hegmans A, Qu Y, Farrell N (2005) J Biol Inorg Chem 10:433

    Article  CAS  Google Scholar 

  37. Williams JW, Qu Y, Bullus GH, Alvorado E, Farrell NP (2007) Inorg Chem 46:5820

    Article  CAS  Google Scholar 

  38. Zerzankova L, Suchankova T, Vrana O, Farrell NP, Brabec V, Kasparkova J (2010) Biochem Pharmacol 79:112

    Article  CAS  Google Scholar 

  39. Perrin DD, Armarego WLF, Perrin DR (1980) Purification of laboratory chemicals, 2nd edn. Pergamon, Oxford

    Google Scholar 

  40. Hollis LS, Amundsen AR, Stern EW (1989) J Med Chem 32:128

    Article  CAS  Google Scholar 

  41. Qu Y, Farrell N (1992) Inorg Chem 31:930

    Article  CAS  Google Scholar 

  42. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  43. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  44. Microcal™ Origin™ (1991–2003) Version 7.5, Microcal Software, Inc., One Roundhouse Plaza, Northampton, MA, 1060, USA

  45. Bugarčić ZD, Petrović BV, Jelić R (2001) Transit Met Chem 26:66

    Google Scholar 

  46. Appleton TG, Hall JR, Ralph SF, Thompson CMS (1984) Inorg Chem 23:3521

    Article  CAS  Google Scholar 

  47. Zhang J, Thomas DS, Davies MS, Berners-Price SJ, Farrell N (2005) J Biol Inorg Chem 10:652

    Article  CAS  Google Scholar 

  48. Hochreuther S, Puchta R, van Eldik R (2011) Inorg Chem 50:8984

    Article  CAS  Google Scholar 

  49. Norman RE, Ranford J, Sadler PJ (1992) Inorg Chem 31:880 (and reference cited therein)

    Article  Google Scholar 

  50. Kasherman Y, Sturup S, Gibson D (2009) J Biol Inorg Chem 14:387

    Article  CAS  Google Scholar 

  51. Ma G, Min Y, Huang F, Jiang T, Liu Y (2010) Chem Commun 46:6938

  52. Oehlsen ME, Hegmans A, Qu Y, Farrell N (2005) Inorg Chem 44:3004

    Article  CAS  Google Scholar 

  53. Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688

    Article  CAS  Google Scholar 

  54. Mambanda A, Jaganyi D (2011) Dalton Trans 40:79

    Article  CAS  Google Scholar 

  55. Appleton TG, Hall JR, Ralph SF, Thompson CSM (1989) Inorg Chem 28:1989

    Article  Google Scholar 

  56. Reddy D, Jaganyi D (2011) Int J Chem Kinet 43:161

    Article  CAS  Google Scholar 

  57. Hofmann A, Dahlengburg L, van Eldik R (2003) Inorg Chem 42:6528

    Article  CAS  Google Scholar 

  58. Chen J-T (2006) Platinum. In: Scott RA (ed) Encyclopaedia of inorganic chemistry. Wiley, New York

  59. Soldatović T, Jovanović S, Bugarčić ŽD, van Eldik R (2012) Dalton Trans 41:876

    Article  CAS  Google Scholar 

  60. Ongoma OP, Jaganyi D (2013) Dalton Trans 42:2724

    Article  CAS  Google Scholar 

  61. Ongoma OP, Jaganyi D (2013) Transit Met Chem 38:587

    Article  CAS  Google Scholar 

  62. Ongoma OP, Jaganyi D (2013) Int J Chem Kinet 45:676

    Article  CAS  Google Scholar 

  63. Tobe ML, Burgess J (1999) Inorganic reaction mechanisms. Addison Wesley, Longman, Ltd., Essex, pp 30–33, 70–112

  64. Basolo F, Pearson RG (1967) Mechanisms of inorganic reactions, 2nd edn. Wiley, New York, pp 80–115

    Google Scholar 

  65. Atwood JD (1997) Inorganic and organometallic reaction mechanisms, 2nd edn. Wiley-VCH Inc., New York, pp 43–61

    Google Scholar 

Download references

Acknowledgments

The authors greatly acknowledge financial support from the National Research Foundation (NRF) Pretoria, South Africa, and the University of KwaZulu-Natal. P.O.O gratefully acknowledges continued support from Egerton University, Kenya. The authors kindly thank Craig Grimmer for the support with NMR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deogratius Jaganyi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2014_9815_MOESM1_ESM.doc

Figures S1 to S3 show UV–Visible spectra for PropPt, ButPt and DecPt at different of pH values. Figures S4–S23, illustrate different concentration and temperature dependent studies for all nucleophiles and complexes. Table S1 shows a summary of the used wavelengths and Tables S2–S25 summarise all values of k obs determined for all reactions at different concentrations and temperatures for all nucleophiles. Included, are Figures S24 to S35 for IR, MS, 195Pt NMR spectra of the selected complexes and 13C NMR spectra for DecPt complex. (DOC 3872 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ongoma, P.O., Jaganyi, D. Detailed mechanistic study on ligand substitution reactions in dinuclear platinum(II) complexes: effect of alkanediamine linker. Transition Met Chem 39, 407–420 (2014). https://doi.org/10.1007/s11243-014-9815-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-014-9815-z

Keywords

Navigation