Skip to main content
Log in

Studies on the coordination chemistry of methylated xanthines and their imidazolium salts. Part 1: benzyl derivatives

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

New imidazolium salts derived from the natural methylated xanthines theophylline, theobromine and caffeine, namely 1,3-dimethyl-9-benzylxanthinium bromide (tphBzBr, 1a), 3,7-dimethyl-9-benzylxanthinium bromide (tbrBzBr, 2a) and 1,3,7-trimethyl-9-benzylxanthinium bromide (caffBzBr, 3a), are reported. Also, the disubstituted analog of 1a, 1,3-dimethyl-7,9-dibenzylxanthinium bromide (tphBz2Br, 1a′) was identified and characterized by NMR. The coordination chemistry of ligands 1a3a toward palladium, and some theoretical aspects of the unmodified theophylline, theobromine and caffeine are studied. Our results prove that the theophylline derivative has the thermodynamic tendency to form N-bonded species, even when an equilibrium between the Pd–NHC and the “theophyllinate” was observed spectroscopically, due to the anisotropy of the NHC ligand. To confirm the N-coordination, the solid state structure of the new “theophyllinate” species PdBr2(tphBz-H)2 (4), derived from 1a, was determined by X-ray diffraction. The analog with theobromine, ligand 2a, coordinates to palladium via N1, in an analogous manner to 1a, and a mixture of the cis/trans isomers of its palladium complex is obtained. On the other hand, since there is no possibility of N-coordination in 3a, this caffeine derivative forms a Pd-NHC compound after deprotonation with a strong base. Both the theoretical results and the experimental evidence are in accordance, in terms of the predicted coordination sites or possibility of modification of the selected methylated xanthines to obtain new ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lusty JR, Lee PF (1984) Inorg Chim Acta 91:L47–L49

    Article  CAS  Google Scholar 

  2. Goodgame DML, Hayman PB, Riley RT, Williams DJ (1984) Inorg Chim Acta 91:89–93

    Article  CAS  Google Scholar 

  3. Colacio-Rodríguez E, Salas-Peregrin JM (1984) Thermochim Acta 74:45–54

    Article  Google Scholar 

  4. Moreno-Vida MI, Colacio-Rodríguez E, Moreno-Carretero MN, Salas-Peregrin JM, Simard M, Beauchamp AL (1989) Inorg Chim Acta 157:201–207

    Article  CAS  Google Scholar 

  5. Moreno-Vida MI, Colacio-Rodríguez E, Moreno-Carretero MN, Ruiz-Sánchez J, Salas-Peregrin JM (1987) Thermochim Acta 115:45–55

    Article  CAS  Google Scholar 

  6. Salas-Peregrin JM, Colacio-Rodríguez E, Romero-Molina MA, Sánchez-Sánchez MP (1983) Thermochim Acta 69:313–321

    Article  CAS  Google Scholar 

  7. Clarke MJ, Taube H (1975) J Am Chem Soc 97:1397–1403

    Article  CAS  Google Scholar 

  8. Umapathy P, Harnesswala RA, Dorai CS (1985) Polyhedron 4:1595–1602

    Article  CAS  Google Scholar 

  9. Romerosa A, Varela JS, Hidalgo MA, Avila-Rosón JC, Colacio E (1997) Inorg Chem 36:3784–3786

    Article  CAS  Google Scholar 

  10. Kascatan-Nebioglu A, Panzner MJ, Garrison JC, Tessier CA, Youngs WJ (2004) Organometallics 23:1928–1931

    Article  CAS  Google Scholar 

  11. Kascatan-Nebioglu A, Melaiye A, Hindi K, Durmus S, Panzner MJ, Hogue LA, Mallett RJ, Hovis CE, Coughenour MH, Crosby SD, Milsted A, Ely DL, Tessier CA, Cannon CL, Youngs WJ (2006) J Med Chem 49:6811–6818

    Article  CAS  Google Scholar 

  12. Melaiye A, Simons RS, Milsted A, Pingitore F, Wesdemiotis C, Tessier CA, Youngs WJ (2004) J Med Chem 47:973–977

    Article  CAS  Google Scholar 

  13. Herrmann WA, Schütz J (2004) J Organomet Chem 689:2995–2999

    Article  Google Scholar 

  14. Chung CK, Grubbs RH (2008) Org Lett 10:2693–2696

    Article  CAS  Google Scholar 

  15. Poyatos M, McNamara W, Incarvito C, Clot E, Peris E, Crabtree RH (2008) Organometallics 27:2128–2136

    Article  CAS  Google Scholar 

  16. Ray L, Shaikh MM, Ghosh P (2008) Inorg Chem 47:230–240

    Article  CAS  Google Scholar 

  17. Radius U, Bickelhaupt FM (2009) Coord Chem Rev 253:678–686

    Article  CAS  Google Scholar 

  18. Jacobsen H, Correa A, Poater A, Costabile C, Cavallo L (2009) Coord Chem Rev 253:687–703

    Article  CAS  Google Scholar 

  19. Buscemi G, Biffis A, Tubaro C, Basato M (2009) Catal Today 140:84–89

    Article  CAS  Google Scholar 

  20. Beck W, Kottmair N (1976) Chem Ber 109:970–993

    Article  CAS  Google Scholar 

  21. Herrmann WA (2002) Angew Chem Int Ed 41:1290–1309

    Article  CAS  Google Scholar 

  22. Doyle JR, Slade PE, Jonassen HB (1960) Inorg Synth 6:216–219

    Article  CAS  Google Scholar 

  23. North ACT, Phillips DC, Mathews FS (1968) Acta Cryst A. 24:351–359

    Google Scholar 

  24. Sheldrick GM, SHELX-97 (Release 97-2) (1997) Program for structure refinement. University of Gottingen, Gottingen

    Google Scholar 

  25. Leboeuf M, Koster M, Jug K, Salahub DR (1999) J Chem Phys 111:4893–4905

    Article  CAS  Google Scholar 

  26. Gadre SR, Shirsat RN (2000) Electrostatics of atoms and molecules. Universities Press, Hyderabad

    Google Scholar 

  27. Pingale SS, Gadre SR, Batolotti LJ (1998) J Phys Chem A 102:9987–9992

    Article  CAS  Google Scholar 

  28. Deshmukh MM, Sastry NV, Gadre SR (2004) J Chem Phys 121:12402–12410

    Article  CAS  Google Scholar 

  29. Joshi KA, Gejji SP (2005) J Mol Struc Theochem 724:87–93

    Article  CAS  Google Scholar 

  30. Tachikawa H, Iyama T, Kawabata H (2005) J Mol Struc Theochem 718:117–122

    Article  CAS  Google Scholar 

  31. Pathak RK, Gadre SR (1990) J Chem Phys 93:1770–1773

    Article  CAS  Google Scholar 

  32. Gadre SR, Kulkarni SA, Shrivastava IH (1992) J Chem Phys 96:5253–5260

    Article  CAS  Google Scholar 

  33. Gadre SR, Pathak RK (1989) Proc Ind Acad Sci (Chem Sci) 102:189–192

    Google Scholar 

  34. Alhambra C, Luque FJ, Orozco M (1995) J Phys Chem 99:3084–3092

    Article  CAS  Google Scholar 

  35. Kornelak P, Michalak A, Najbar M (2005) Catal Today 101:175–183

    Article  CAS  Google Scholar 

  36. Michalak A (2004) Chem Phys Lett 386:346–350

    Article  CAS  Google Scholar 

  37. Politzer P, Truhlar DG (1982) Chemical applications of atomic and molecular electrostatic potentials. New York, Plenum

    Google Scholar 

  38. Murray JS, Sen KD (1996) Molecular electrostatic potential: concepts and applications. Elsevier, Amsterdam

    Google Scholar 

  39. Orozco M, Luque FJ (1996) Theor comput Chem Ser 3:181

  40. Aray Y, Marquez M, Rodríguez J, Coll S, Simón-Manso Y, Gonzalez C, Weitz DA (2003) J Phys Chem B 107:8946–8952

    Article  CAS  Google Scholar 

  41. Aray Y, Marquez M, Rodríguez J, Coll S, Simón-Manso Y, Gonzalez C, Weitz DA (2004) J Phys Chem B 108:2418–2424

    Article  CAS  Google Scholar 

  42. Aray Y, Rodríguez J, Coll S, Gonzalez C, Marquez M (2004) J Phys Chem B 108:18942–18948

    Article  CAS  Google Scholar 

  43. Tal Y, Bader RFW, Erkku J (1980) Phys Rev A 21:1–11

    Article  CAS  Google Scholar 

  44. Keith TA, Bader RFW, Aray Y (1996) Int J Quantum Chem 57:183–198

    Article  CAS  Google Scholar 

  45. Sjoberg P, Politzer P (1990) J Phys Chem 94:3959–3961

    Article  CAS  Google Scholar 

  46. Aray Y, Rodríguez J (2007) J Mol Catal A 265:32–41

    Article  CAS  Google Scholar 

  47. Aray Y, RodrÍguez J, Vega D (2006) In: Matta CF, Boyd RJ (eds) The quantum theory of atoms in molecules: from DNA to solid and drug design. Wiley-VCH, Weinheim

    Google Scholar 

  48. Aray Y, Rodríguez J, Coll S, Rodríguez-Arias E, Vega D (2005) J. Phys. Chem. B 109:23564–23570

    Article  CAS  Google Scholar 

  49. Delley B (1990) J Chem Phys 92:508

    Article  CAS  Google Scholar 

  50. Delley B (2000) J Chem Phys 113:7756

    Article  CAS  Google Scholar 

  51. Perdew JP, Wang Y (1992) Phys Rev B 45:13244–13249

    Article  Google Scholar 

  52. Chen J, Chen L, Xu L, Zheng K, Ji L (2008) J Phys Chem B 112:9966–9974

    Article  CAS  Google Scholar 

  53. Serrano-Andrés L, Merchán M, Borin AC (2008) J Am Chem Soc 130:2473–2484

    Article  Google Scholar 

  54. Ramaekers R, Dkhissi A, Adamowicz L, Maes G (2002) J Phys Chem A 106:4502–4512

    Article  CAS  Google Scholar 

  55. Major DT, Laxer A, Fischer B (2002) J Org Chem 67:790–802

    Article  CAS  Google Scholar 

  56. Virta P, Koch A, Roslund MU, Mattjus P, Kleinpeter E, Kronberg L, Sjöholm R, Klika KD (2005) Org Biomol Chem 3:2924–2929

    Article  CAS  Google Scholar 

  57. Gonella NC, Roberts JD (1982) J Am Chem Soc 104:3162–3164

    Article  Google Scholar 

  58. Dutta Saikia M, Dutta NN (2006) Col Surfa A 280:163–168

    Article  Google Scholar 

  59. Huang Y, Kenttamaa H (2004) J Phys Chem A 108:4485–4490

    Article  CAS  Google Scholar 

  60. Blanco F, Alkorta I, Zborowski K, Elguero J (2007) Struct Chem 18:965–975

    Article  CAS  Google Scholar 

  61. Baik M, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092

    Article  CAS  Google Scholar 

  62. Pneumatikakis G (1984) Inorg Chim Acta 93:5–11

    Article  CAS  Google Scholar 

  63. Pneumatikakis G, Yannopoulos A, Markopoulos J, Angelopoulos C (1988) Inorg Chim Acta 152:101–106

    Article  CAS  Google Scholar 

  64. Rajendran S, Amalraj AJ, Joice MJ, Anthony N, Trivedi DC, Sundaravadivelu M (2004) Corr Rev 22:233–248

    CAS  Google Scholar 

  65. Kolaylı S, Ocak M, Küçük M, Abbasoğlu R (2004) Food Chem 84:383–388

    Article  Google Scholar 

  66. Nafisi S, Sadjadi AS, Zadeh SS, Damerchelli M (2003) Biomol Struct & Dynam 21:289–296

    CAS  Google Scholar 

  67. Mikulski CM, Kurlan MK, Bayne M, Gaul M, Karayannis NM (1988) J Coord Chem 17:267–275

    Article  CAS  Google Scholar 

  68. Mikulski CM, Grossman S, Lee CJ, Karayannis NM (1987) Trans Met Chem 12:21–25

    Article  CAS  Google Scholar 

  69. Mikulski CM, Grossman S, Bayne ML, Gaul M, Kanach D, Udell K, Karayannis NM (1990) Inorg Chim Acta 173:31–35

    Article  CAS  Google Scholar 

  70. Ivanov EI, Kalayanov GD, Yaroshchenko IM, Stepanov DE (1989) Chem Heterocyc Comp 25:1318

    Article  Google Scholar 

  71. Dupont J, Consorti CS, Suarez PAZ, de Souza RF (2004) Org Synth 10:184–187

    Google Scholar 

  72. Creary X, Willis E (2005) Org Synth 82:166–167

    CAS  Google Scholar 

  73. Ito Y, Hirao T, Tsubata K, Saegusa T (1978) Tetrahedron Lett 18:1535–1538

    Google Scholar 

  74. Fehlhammer WP, Bliβ T, Fuchs J, Holzmann G (1992) Zeitschrift Fur Naturforschung. 47B:79–89

    Google Scholar 

  75. Glorius F (2007) Top Organomet Chem 21:1–20

    Article  CAS  Google Scholar 

  76. Díez-González S, Nolan SP (2007) Top Organomet Chem 21:47–82

    Article  Google Scholar 

  77. Peris E (2007) Top Organomet Chem 21:83–116

    Article  CAS  Google Scholar 

  78. Tekavec TN, Louie J (2007) Top Organomet Chem 21:159–192

    Article  CAS  Google Scholar 

  79. Herrmann WA, Schwarz J, Gardiner MG, Spiegler M (1999) J Organomet Chem 575:80–86

    Article  CAS  Google Scholar 

  80. Loch JA, Albrecht M, Peris E, Mata J, Faller JW, Crabtree RH (2002) Organometallics 21:700–706

    Article  CAS  Google Scholar 

  81. Huynh HV, Han Y, Ho JHH, Tan GK (2006) Organometallics 25:3267–3274

    Article  CAS  Google Scholar 

  82. Gottleib HE, Kotlyar V, Nudelman A (1997) J Org Chem 62:7512–7515

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Decanato de Investigación y Desarrollo de la Universidad Simón Bolívar (DID-USB) for promoting this scientific activity, and Laboratorios FARMA (Caracas, Venezuela) for a generous loan on theophylline. We also thank ETH Zürich DCHAB/LOC MS-Service for performing the HRMS analyses and Lic. Giuseppe Lubes for some previous synthetic tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa R. Landaeta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11243_2009_9310_MOESM1_ESM.tif

Representation of the frontier orbitals for Theophylline (1). a) The molecule of theophylline; b) HOMO for 1; c) LUMO for 1

11243_2009_9310_MOESM2_ESM.tif

Representation of the frontier orbitals for Theobromine (2). a) The molecule of theobromine; b) HOMO for 2; c) LUMO for 2

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landaeta, V.R., Rodríguez-Lugo, R.E., Rodríguez-Arias, E.N. et al. Studies on the coordination chemistry of methylated xanthines and their imidazolium salts. Part 1: benzyl derivatives. Transition Met Chem 35, 165–175 (2010). https://doi.org/10.1007/s11243-009-9310-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-009-9310-0

Keywords

Navigation