Skip to main content
Log in

Electrocatalytic activity of binary Palladium Ruthenium anode catalyst on Ni-support for ethanol alkaline fuel cells

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

In search for a cheaper anode catalyst for the oxidation of ethanol for development of direct alcohol fuel cells, Pd has been considered here as an interesting substitute for Pt in Pt Ru binary electrodeposite. The binary catalyst when co-deposited on nickel support has been found to increase the current density and decrease the anodic overvoltage significantly with respect to pure Pt, Pd and Ni. Its electrocatalytic capability is also comparable with that of the Pt-Ru binary electrocatalyst on Ni-support, when studied in 1 M EtOH containing 1 M NaOH solution. The effect of loading of Pd Ru electrocatalyst on Ni support has also been tested. The electrocatalytic activity of the electrodes for oxidation of ethanol has been explained by studies of cyclic voltammetry, chronopotentiometry, steady-state polarization, and conjugated scanning electron microscopy–energy dispersion X-ray spectroscopy. It has been found that electrode containing the higher amount of deposit are less affected by carbonaceous poisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.J. Berger (1999) Science 286 49 Occurrence Handle10.1126/science.286.5437.49c Occurrence Handle1:CAS:528:DyaK1MXmsFaltL8%3D

    Article  CAS  Google Scholar 

  2. O. Savadogo K. Lee K. Oishi S. Mitsushima N. Kamiya (2004) Electrochem. Comm. 6 105 Occurrence Handle10.1016/j.elecom.2003.10.020 Occurrence Handle1:CAS:528:DC%2BD2cXksFantg%3D%3D

    Article  CAS  Google Scholar 

  3. I.L. Finar, Organic Chemistry (vol.1), Addison Wesley Longman (Singapore) Pte Ltd., Indian Branch, Delhi–110092, India, 2001

  4. M. Haruta (1997) Catal. Today 36 153 Occurrence Handle10.1016/S0920-5861(96)00208-8 Occurrence Handle1:CAS:528:DyaK2sXitFCrtb0%3D

    Article  CAS  Google Scholar 

  5. C. W. Xu and P. K. Shen, Chem. Commun., 2238 (2004)

  6. E.S. Ranganathan S.K. Bej L.T. Thomson (2005) Appl. Catal. A 289 153 Occurrence Handle10.1016/j.apcata.2005.04.022 Occurrence Handle1:CAS:528:DC%2BD2MXmt1Sqtrw%3D

    Article  CAS  Google Scholar 

  7. M. Wang D.J. Guo H.L. Li (2005) J. Solid State Chem 178 1996 Occurrence Handle10.1016/j.jssc.2005.04.006 Occurrence Handle1:CAS:528:DC%2BD2MXltVKnsrg%3D

    Article  CAS  Google Scholar 

  8. K. Machida M. Enyo (1987) J. Electrochem. Soc. 134 1472 Occurrence Handle10.1149/1.2100693 Occurrence Handle1:CAS:528:DyaL2sXkvVGqtrs%3D

    Article  CAS  Google Scholar 

  9. J. O’M Bokris S.U.K. ReddyKhan (1993) Surface Electrochemistry, a Molecular Level Approach Plenum New York 268

    Google Scholar 

  10. F.A. Lewis (1967) The Palladium Hydrogen System Academic Press London

    Google Scholar 

  11. L. Dubau F. Hahn C. Coutanceau J.-M. Leger C. Lamy (2003) J. Electroanal. Chem. 554–555 407 Occurrence Handle10.1016/S0022-0728(03)00308-5

    Article  Google Scholar 

  12. A.V. Tripkovic K.D. Popovic B.N. Grgur B. Blizanae P.N. Ross N.M. Markovic (2002) Electrochim. Acta 47 3707 Occurrence Handle10.1016/S0013-4686(02)00340-7 Occurrence Handle1:CAS:528:DC%2BD38Xms1ans7o%3D

    Article  CAS  Google Scholar 

  13. Sens. Actuators B, 17, 215(1994)

  14. P. Paul, J. Bagchi and S. K. Bhattacharya, Ind. J. Chem. (A), May, 2006

  15. A.E. Bolzan A.J. Arvia (1992) J. Electroanal. Chem. 322 247 Occurrence Handle10.1016/0022-0728(92)80080-N Occurrence Handle1:CAS:528:DyaK38Xit1elsrY%3D

    Article  CAS  Google Scholar 

  16. L.D. Burke J.K. Casey (1993) J. Electrochem. Soc. 140 1284 Occurrence Handle10.1149/1.2220972 Occurrence Handle1:CAS:528:DyaK3sXktFKqur0%3D

    Article  CAS  Google Scholar 

  17. L.D. Burke J.K. Casey (1993) J. Electrochem. Soc. 140 1292 Occurrence Handle10.1149/1.2220973 Occurrence Handle1:CAS:528:DyaK3sXktFKquro%3D

    Article  CAS  Google Scholar 

  18. A.E. Bolzan A.J. Arvia (1993) J. Electroanal. Chem. 354 243 Occurrence Handle10.1016/0022-0728(93)80337-H Occurrence Handle1:CAS:528:DyaK2cXktVekug%3D%3D

    Article  CAS  Google Scholar 

  19. A.E. Bolzan J.O. Zerbino E. Macchi A.J. Arvia (1993) Thin solid Film 233 77 Occurrence Handle10.1016/0040-6090(93)90065-W Occurrence Handle1:CAS:528:DyaK2cXhslGlsw%3D%3D

    Article  CAS  Google Scholar 

  20. M.A. Abdel Rahim R.M. Abdel Hameed M.W. Khalil (2004) J. Power Sources 134 160 Occurrence Handle10.1016/j.jpowsour.2004.02.034 Occurrence Handle1:CAS:528:DC%2BD2cXlslGiurk%3D

    Article  CAS  Google Scholar 

  21. David R. Lide (Ed), Handbook of Chemistry and Physics 83rd ed, 2002–2003, CRC Press LLC

  22. A.E. Bolzan (1995) J. Electroanal. Chem. 380 127 Occurrence Handle10.1016/0022-0728(94)03627-F Occurrence Handle1:CAS:528:DyaK2MXjt1Sqs7s%3D

    Article  CAS  Google Scholar 

  23. M.C. Morin C. Lamy J.M. Leger (1990) J. Electroanal. Chem. 283 287 Occurrence Handle10.1016/0022-0728(90)87396-2 Occurrence Handle1:CAS:528:DyaK3cXktlWjtrw%3D

    Article  CAS  Google Scholar 

  24. C. Lamy A. Lima V. LeRhun F. Delime C. Coutanceau J.M. Leger (2002) J. Power Source 105 283 Occurrence Handle10.1016/S0378-7753(01)00954-5 Occurrence Handle1:CAS:528:DC%2BD38XitVyju7w%3D

    Article  CAS  Google Scholar 

  25. L. Zhaolin L. X. Yi S. Xiaodi J. Yanglee G. L. Ming (2005) J. Power Source 149 1 Occurrence Handle10.1016/j.jpowsour.2005.02.009

    Article  Google Scholar 

  26. E. Gileadi, E. Kirowa-Eisner and J. Penciner, Interfacial Electrochemistry, An Experimental Approach, p. 399

  27. C. Roth N. Benker T. Buhmester M. Mazurek M. Loster H. Fuess D.C. Koningsberger D.E. Ramaker (2005) J. Am. Chem. Soc. 127 14607 Occurrence Handle10.1021/ja050139f Occurrence Handle1:CAS:528:DC%2BD2MXhtVGqs7bL

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Kumar Bhattacharya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagchi, J., Bhattacharya, S.K. Electrocatalytic activity of binary Palladium Ruthenium anode catalyst on Ni-support for ethanol alkaline fuel cells. Transition Met Chem 32, 47–55 (2007). https://doi.org/10.1007/s11243-006-0127-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-006-0127-9

Keywords

Navigation