Abstract
Nanoscale spontaneous imbibition is a common process in nanoporous soil and unconventional reservoirs. Due to the complexity of these natural nanoporous media, the relevant spontaneous imbibition dynamics are still unclear. Thus, this paper studies spontaneous imbibition dynamics of liquids into a nanoporous carbon scaffold (NCS, with controllable wettability and pore geometry). The effects of evaporation and surfactant on spontaneous imbibition are also examined. For low-volatility liquids, a linear relationship between spontaneous imbibition height (\(H\)) and square root of time (\(\sqrt{t}\)) is observed. A modified Lucas–Washburn (L–W) equation is developed to describe the corresponding dynamics and to predict the NCS effective radius and the advancing water contact angle. A dimensionless time function is presented, which includes the properties of solid and liquid and their interactions, and can be used for upscaling spontaneous imbibition data in nanoporous media from laboratory to reservoir scales. Both a larger NCS pore diameter and pore throat diameter cause faster imbibition. The addition of surfactant into an aqueous solution increases the imbibition rate, although this influence is suppressed with pore size decrease. In contrast, for high-volatility liquids, a significant deviation from the linear relationship between \(H\) and \(\sqrt{t}\) is found at late times. The modified L–W equation is further developed to include evaporation effect. This study thus provides fundamental understanding of spontaneous imbibition dynamics at nanoscales. The developed theoretical models are expected to be applicable to important problems such as water infiltration into soil, fracturing fluid loss in unconventional reservoirs, and electrolyte migration in electrochemical devices.
Article Highlights
-
A new nanoporous material (with controllable wettability and pore geometry) is used to study nanoscale spontaneous imbibition dynamics;
-
The effects of pore geometry, surfactant, and evaporation on liquid imbibition in nanoporous media are explored;
-
The presented new models can characterize spontaneous imbibition dynamics in nanoporous porous media accurately.








Similar content being viewed by others
Abbreviations
- NCS:
-
Nanoporous carbon scaffold
- NCS 22–7:
-
NCS with pore diameter of 22 nm and pore throat diameter of 7 nm
- NCS 50–12:
-
NCS with pore diameter of 50 nm and pore throat diameter of 12 nm
- NCS 85–16:
-
NCS with pore diameter of 85 nm and pore throat diameter of 16 nm
- NCS 85–35:
-
NCS with pore diameter of 85 nm and pore throat diameter of 35 nm
- PD:
-
Pore diameter (nm)
- PTD:
-
Pore throat diameter (nm)
- \({\theta }_{e}\) :
-
Equilibrium contact angle (°)
- \({\theta }_{a}\) :
-
Advancing contact angle (°)
- \(\gamma\) :
-
Interfacial tension between liquid and vapor (mN/m)
- \({R}_{e}\) :
-
Effective radius (nm)
- \(R\) :
-
Capillary/tube radius (nm)
- \(H\) :
-
Spontaneous imbibition height/distance (mm)
- \({h}_{e}\) :
-
Equilibrium height (m)
- \({P}_{c}\) :
-
Capillary pressure (Pa)
- \({k}_{w}\) :
-
Water permeability (\({{\mu m}}^{2}\))
- \(t\) :
-
Time (s)
- \({t}_{D}\) :
-
Dimensionless time
- \({S}_{w}\) :
-
Water saturation
- \(\varnothing\) :
-
Porosity
- \(v\) :
-
Spontaneous imbibition rate (m/s)
- \(\tau\) :
-
Tortuosity
- \(e\) :
-
Evaporation rate (\({\mu m/s}\))
- b :
-
NCS thickness (\({\mu m}\))
- \(g\) :
-
Gravitational constant (N/kg)
- \(\mu\) :
-
Liquid viscosity (\(\mathrm{mPa}\bullet \mathrm{s}]\))
- \(\rho\) :
-
Liquid density (kg/m3)
- \({R}^{2}\) :
-
Correlation coefficient
References
Acquaroli, L.N., Urteaga, R., Berli, C.L.A., Koropecki, R.R.: Capillary filling in nanostructured porous silicon. Langmuir 27(5), 2067–2072 (2011). https://doi.org/10.1021/la104502u
Adamson, A.W.: Physical Chemistry of Surfaces, 5th edn. Wiley, New York (1990)
Al-Menhali, A., Niu, B., Krevor, S.: Capillarity and wetting of carbon dioxide and brine during drainage in Berea sandstone at reservoir conditions. Water Resour. Res. 51(10), 7895–7914 (2015). https://doi.org/10.1002/2015WR016947
Alnili, F., Al-Yaseri, A., Roshan, H., Rahman, T., Verall, M., Lebedev, M., et al.: Carbon dioxide/brine wettability of porous sandstone versus solid quartz: an experimental and theoretical investigation. J. Colloid Interface Sci. 524, 188–194 (2018). https://doi.org/10.1016/j.jcis.2018.04.029
Bachu, S.: Drainage and imbibition CO2/brine relative permeability curves at in situ conditions for sandstone formations in western Canada. Energy Proced. 37, 4428–4436 (2013). https://doi.org/10.1016/j.egypro.2013.07.001
Balankin, A.S., Paredes, R.G., Susarrey, O., Morales, D., Vacio, F.C.: Kinetic roughening and pinning of two coupled interfaces in disordered media. Phys. Rev. Lett. 96, 056101 (2006). https://doi.org/10.1103/PhysRevLett.96.056101
Bano, M.: Effects of the transition zone above a water table on the reflection of GPR waves. Geophys. Res. Lett. 33(13), L13309 (2006). https://doi.org/10.1029/2006GL026158
Bear, J.: Dynamics of Fluids in Porous Media. Dover (2013)
Bi, Z., Liao, W., Qi, L.: Wettability alteration by CTAB adsorption at surfaces of SiO 2 film or silica gel powder and mimic oil recovery. Appl. Surf. Sci. 221(1–4), 25–31 (2004). https://doi.org/10.1016/S0169-4332(03)00948-6
Birss, V.I., Li, X., Banham, D., Kwok, D.Y.: (2019). Porous Carbon Films. U.S. Patent 10,258,932
Bocquet, L.: Nanofluidics coming of age. Nat. Mater. 19(3), 254–256 (2020). https://doi.org/10.1038/s41563-020-0625-8
Brú, A., Pastor, J.M.: Experimental characterization of hydration and pinning in bentonite clay a swelling heterogeneous porous medium. Geoderma 134(3–4), 295–305 (2006)
Cai, J., Yu, B.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media (2011). https://doi.org/10.1007/s11242-011-9767-0
Ceratti, D.R., Faustini, M., Sinturel, C., Vayer, M., Dahirel, V., Jardat, M., Grosso, D.: Critical effect of pore characteristics on capillary infiltration in mesoporous films. Nanoscale 7(12), 5371–5382 (2015). https://doi.org/10.1039/c4nr03021d
Chang, C., Kneafsey, T.J., Wan, J., Tokunaga, T.K., Nakagawa, S.: Impacts of mixed-wettability on brine drainage and supercritical CO2 storage efficiency in a 2.5-D heterogeneous micromodel. Water Resour. Res. (2020). https://doi.org/10.1029/2019wr026789
Clarkson, C.R., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L., et al.: Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion. Fuel 103, 606–616 (2013). https://doi.org/10.1016/j.fuel.2012.06.119
Davoodabadi, A., Li, J., Liang, Y., Wood, D.L., Singler, T.J., Jin, C.: Analysis of electrolyte imbibition through lithium-ion battery electrodes. J. Power Sour. (2019). https://doi.org/10.1016/j.jpowsour.2019.03.115
Debye, P., Cleland, R.L.: Flow of liquid hydrocarbons in porous vycor. J. Appl. Phys. 30, 843 (1959). https://doi.org/10.1063/1.1735251
Deglint, H.J., Clarkson, C.R., DeBuhr, C., Ghanizadeh, A.: Live imaging of micro-wettability experiments performed for low-permeability oil reservoirs. Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-04239-x
Deglint, H.J., Clarkson, C.R., Ghanizadeh, A., DeBuhr, C., Wood, J.M.: Comparison of micro- and macro-wettability measurements and evaluation of micro-scale imbibition rates for unconventional reservoirs: implications for modeling multi-phase flow at the micro-scale. J. Nat. Gas Sci. Eng. (2019). https://doi.org/10.1016/j.jngse.2018.11.026
Delker, T., Pengra, D.B., Wong, P.Z.: Interface pinning and the dynamics of capillary rise in porous media. Phys. Rev. Lett. 76, 2902 (1996). https://doi.org/10.1103/PhysRevLett.76.2902
Dubé, M., Rost, M., Alava, M.: Conserved dynamics and interface roughening in spontaneous imbibition: a critical overview. Eur. Phys. J. B 15(4), 691–699 (2000). https://doi.org/10.1007/s100510051174
Fadaei, H., Shaw, J.M., Sinton, D.: Bitumen−toluene mutual diffusion coefficients using microfluidics. Energy Fuels (2013). https://doi.org/10.1021/ef400027t
Fries, N., Odic, K., Conrath, M., Dreyer, M.: The effect of evaporation on the wicking of liquids into a metallic weave. J. Colloid Interface Sci. 321(1), 118–129 (2008). https://doi.org/10.1016/j.jcis.2008.01.019
Garing, C., Benson, S.M.: CO2 wettability of sandstones: addressing conflicting capillary behaviors. Geophys. Res. Lett. 46(2), 776–782 (2019). https://doi.org/10.1029/2018GL081359
Gennes, P.G., Brochard-Wyart, F., Quéré, D.: Capillarity and gravity, capillarity and wetting phenomena, 33–67. Springer New York (2004). https://doi.org/10.1007/978-0-387-21656-0_2
Ghanizadeh, A., Clarkson, C.R., Clarke, K.M., Yang, Z., Rashidi, B., Vahedian, A., et al.: Effects of entrained hydrocarbon and organic-matter components on reservoir quality of organic-rich shales: implications for “sweet spot” identification and enhanced-oil-recovery applications in the Duvernay formation (Canada). SPE J. 25(03), 1351–1376 (2020). https://doi.org/10.2118/189787-pa
Girard, F., Antoni, M., Faure, S., Steinchen, A.: Influence of heating temperature and relative humidity in the evaporation of pinned droplets. Colloids Surf. A 323(1–3), 36–49 (2008). https://doi.org/10.1016/j.colsurfa.2007.12.022
Gruener, S., Huber, P.: Spontaneous imbibition dynamics of an n-alkane in nanopores: evidence of meniscus freezing and monolayer sticking. Phys. Rev. Lett. 103, 174501 (2009). https://doi.org/10.1103/PhysRevLett.103.174501
Gruener, S., Huber, P.: Capillarity-driven oil flow in nanopores: darcy scale analysis of Lucas-Washburn imbibition dynamics. Transp. Porous Media 126(3), 599–614 (2019). https://doi.org/10.1007/s11242-018-1133-z
Gruener, S., Hofmann, T., Wallacher, D., Kityk, A.V., Huber, P.: Capillary rise of water in hydrophilic nanopores. Phys. Rev. E 79, 067301 (2009). https://doi.org/10.1103/PhysRevE.79.067301
Gruener, S., Hermes, H.E., Schillinger, B., Egelhaaf, S.U., Huber, P.: Capillary rise dynamics of liquid hydrocarbons in mesoporous silica as explored by gravimetry, optical and neutron imaging: nano-rheology and. Colloids Surf. A: Physicochem. Eng. Asp. 496, 13–27 (2016)
Gupta, A., Civan, F.: Improved model for laboratory measurement of matrix to fracture transfer function parameters in immiscible displacement. SPE Ann. Tech. Conf. Exhib. (1994). https://doi.org/10.2118/28929-ms
Hall, C., Hoff, W.D.: Rising damp: capillary rise dynamics in walls. Proc. R. Soc. A: Math., Phys. Eng. Sci. 463(2084), 1871–1884 (2007). https://doi.org/10.1098/rspa.2007.1855
Han, A., Mondin, G., Hegelbach, N.G., de Rooij, N.F., Staufer, U.: Filling kinetics of liquids in nanochannels as narrow as 27 nm by capillary force. J. Colloid Interface Sci. 293(1), 151–157 (2006)
Handy, L.L.: Determination of effective capillary pressures for porous media from imbibition data. Trans. AIME (1960). https://doi.org/10.2118/1361-G
Haneveld, J., Tas, N.R., Brunets, N., Jansen, H.V., Elwenspoek, M.: Capillary filling of sub- 10 nm nanochannels. J. Appl. Phys. 104, 014309 (2008). https://doi.org/10.1063/1.2952053
Ho, C.-M., Tai, Y.-C.: Micro-electro-mechanical-systems (MEMS) and fluid flows. Annu. Rev. Fluid Mech. 30(1), 579–612 (1998). https://doi.org/10.1146/annurev.fluid.30.1.579
Hong, S., Kim, W.: Dynamics of water imbibition through paper channels with wax boundaries. Microfluid. Nanofluid. 19(4), 845–853 (2015). https://doi.org/10.1007/s10404-015-1611-3
Hu, R., Wan, J., Kim, Y., Tokunaga, T.K.: Wettability impact on supercritical CO2 capillary trapping: pore-scale visualization and quantification. Water Resour. Res. 53(8), 6377–6394 (2017). https://doi.org/10.1002/2017WR020721
Huber, P.: Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. J. Phys. Condens. Matter (2015). https://doi.org/10.1088/0953-8984/27/10/103102
Huber, P., Grüner, S., Schäfer, C., Knorr, K., Kityk, A.V.: Rheology of liquids in nanopores: a study on the capillary rise of water, n-Hexadecane and n-Tetracosane in mesoporous silica. Eur. Phys. J.: Spec. Top. 141(1), 101–105 (2007). https://doi.org/10.1140/epjst/e2007-00024-0
Iglauer, S.: CO2-water-rock wettability: variability, influencing factors, and implications for CO2 geostorage. Acc. Chem. Res. 50(5), 1134–1142 (2017). https://doi.org/10.1021/acs.accounts.6b00602
Iglauer, S., Pentland, C.H., Busch, A.: CO2 wettability of seal and reservoir rocks and the implications for carbon geo-sequestration. Water Resour. Res. 51(1), 729–774 (2015). https://doi.org/10.1002/2014WR015553
Islam, M.N., Shrivastava, U.N., Atwa, M., Li, X., Birss, V.I., Karan, K.: Highly-ordered nanoporous carbon scaffold with controllable wettability as the microporous layer for fuel cells. ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.0c10755
Kazemi, H., Merrill, L.S., Porterfield, K.L., Zeman, P.R.: Numerical simulation of water-oil flow in naturally fractured reservoirs. SPE AIME J 16(6), 317–326 (1976). https://doi.org/10.2118/5719-pa
Kelly, S., Balhoff, M.T., Torres-Verdín, C.: Quantification of bulk solution limits for liquid and interfacial transport in nanoconfinements. Langmuir 31(7), 2167–2179 (2015). https://doi.org/10.1021/la504742w
Kelly, S., Torres-Verdín, C., Balhoff, M.T.: Anomalous liquid imbibition at the nanoscale: the critical role of interfacial deformations. Nanoscale 8(5), 2751–2767 (2016). https://doi.org/10.1039/c5nr04462f
Kim, J., Ha, J., Kim, H.-Y.: Capillary rise of non-aqueous liquids in cellulose sponges. J. Fluid Mech 818, 2 (2017). https://doi.org/10.1017/jfm.2017.165
Koch, G.W., Stillet, S.C., Jennings, G.M., Davis, S.D.: The limits to tree height. Nature 428(6985), 851–854 (2004). https://doi.org/10.1038/nature02417
Lago, M., Araujo, M.: Capillary rise in porous media. J. Colloid Interface Sci. 234(1), 35–43 (2001). https://doi.org/10.1006/jcis.2000.7241
Laughlin, R.D., Davies, J.E.: Some aspects of capillary absorption in fibrous textile wicking. Text. Res. J. (1961). https://doi.org/10.1177/004051756103101011
Li, X., Banham, D., Feng, F., Forouzandeh, F., Ye, S., Kwok D.Y., Birss, V.: Wettability of colloid-imprinted carbons by contact angle kinetics and water vapor sorption measurements. Carbon 87, 44–60 (2015)
Liu, J., Xie, H., Wang, Q., Chen, S., Hu, Z.: The effect of pore size on shale gas recovery with CO2 sequestration: insight into molecular mechanisms. Energy Fuels 33(4), 2897–2907 (2019). https://doi.org/10.1021/acs.energyfuels.8b04166
Lockington, D., Parlange, J.-Y.: A new equation for macroscopic description of capillary rise in porous media. J. Colloid Interface Sci. 278(2), 404–409 (2004)
Lucas, Z.R.: Rate of capillary ascension of liquids. Kolloid-Zeitschrift 23, 15–22 (1918)
Ma, S., Morrow, N.R., Zhang, X.: Generalized scaling of spontaneous imbibition data for strongly water-wet systems. J. Petrol. Sci. Eng. 18(3–4), 165–178 (1997). https://doi.org/10.1016/s0920-4105(97)00020-x
Mackay, D., Van Wesenbeeck, I.: Correlation of chemical evaporation rate with vapor pressure. Environ. Sci. Technol. 48(17), 10259–10263 (2014). https://doi.org/10.1021/es5029074
Mattax, C.C., Kyte, J.R.: Imbibition oil recovery from fractured, water-drive reservoir. SPE J. 2(02), 177–184 (1962). https://doi.org/10.2118/187-pa
Mosquera, M., Rivas, T., Prieto, B., Silva, I.B.: Capillary rise in granitic rocks: interpretation of kinetics on the basis of pore structure. J. Colloid Interface Sci. 222(1), 41–45 (2000)
Pan, B., Li, Y., Wang, H., Jones, F., Iglauer, S.: CO2 and CH4 Wettabilities of organic-rich shale. Energy Fuels 32(2), 1914–1922 (2018). https://doi.org/10.1021/acs.energyfuels.7b01147
Pan, B., Jones, F., Huang, Z., Yang, Y., Li, Y., Hejazi, S.H., Iglauer, S.: Methane (CH4) wettability of clay-coated quartz at reservoir conditions. Energy Fuels 33(2), 788–795 (2019). https://doi.org/10.1021/acs.energyfuels.8b03536
Pan, B., Li, Y., Zhang, M., Wang, X., Iglauer, S.: Effect of total organic carbon(TOC) content on shale wettability at high pressure and high temperature conditions. J. Petrol. Sci. Eng. 193, 107374 (2020). https://doi.org/10.1016/j.petrol.2020.107374
Pan, B., Clarkson, I.C., Atwa, M., DeBuhr, C., Ghanizadeh, A., Birss, V.: Wetting dynamics of nanoliter water droplets in hydrophobic nanoporous media. J. Colloid Interface Sci. 589, 411–423 (2021). https://doi.org/10.1016/j.jcis.2020.12.108
Popescu, M.N., Ralston, J., Sedev, R.: Capillary rise with velocity-dependent dynamic contact angle. Langmuir (2008). https://doi.org/10.1021/la801753t
Rapoport, L.A.: Scaling laws for use in design and operation of water-oil flow models. Trans. AIME 204(01), 143–150 (1955). https://doi.org/10.2118/415-g
Shen, A., Liu, Y., Qiu, X., Lu, Y., Liang, S.: A model for capillary rise in nano-channels with inherent surface roughness. Appl. Phys. Lett. 110, 121601 (2017). https://doi.org/10.1063/1.4977773
Sheng, J.J.: Status of surfactant EOR technology. Petroleum 1(2), 97–105 (2015). https://doi.org/10.1016/j.petlm.2015.07.003
Sheng, J.J.: Critical review of field EOR projects in shale and tight reservoirs. J. Petrol. Sci. Eng. 159, 654–665 (2017a). https://doi.org/10.1016/j.petrol.2017.09.022
Sheng, J.J.: What type of surfactants should be used to enhance spontaneous imbibition in shale and tight reservoirs? J. Petrol. Sci. Eng. 159, 635–643 (2017b). https://doi.org/10.1016/j.petrol.2017.09.071
Siddiqui, M.A.Q., Chen, X., Iglauer, S., Roshan, H.: A multiscale study on shale wettability: spontaneous imbibition versus contact angle. Water Resour. Res. 55(6), 5012–5032 (2019). https://doi.org/10.1029/2019WR024893
Siebold, A., Nardin, M., Schultz, J., Walliser, A., Oppliger, M.: Effect of dynamic contact angle on capillary rise phenomena. Colloids Surf. A: Physicochem. Eng. Asp. 161, 81–87 (2000)
Singh, H.: A critical review of water uptake by shales. J. Nat. Gas Sci. Eng. 34, 751–766 (2016). https://doi.org/10.1016/j.jngse.2016.07.003
Supple, S., Quirke, N.: Molecular dynamics of transient oil flows in nanopores I: imbibition speeds for single wall carbon nanotubes. J. Chem. Phys. 121(17), 8571–8579 (2004). https://doi.org/10.1063/1.1796272
Supple, S., Quirke, N.: Molecular dynamics of transient oil flows in nanopores. II. Density profiles and molecular structure for decane in carbon nanotubes. J. Chem. Phys. 122(10), 104706 (2005). https://doi.org/10.1063/1.1856927
Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W.: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87(9–10), 1051–1069 (2015). https://doi.org/10.1515/pac-2014-1117
Tokunaga, T.K., Wan, J.: Surface-zone flow along unsaturated rock fractures. Water Resour. Res. 37(2), 287–296 (2001). https://doi.org/10.1029/2000WR900242
Tokunaga, T.K., Shen, W., Wan, J., Kim, Y., Cihan, A., Zhang, Y., Finsterle, S.: Water saturation relations and their diffusion-limited equilibration in gas shale: implications for gas flow in unconventional reservoirs. Water Resour. Res. 53(11), 9757–9770 (2017). https://doi.org/10.1002/2017WR021153
Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17, 273–283 (1921). https://doi.org/10.1103/PhysRev.17.273
Weislogel, M.M.: Compound capillary rise. J. Fluid Mech. 709, 622–647 (2012). https://doi.org/10.1017/jfm.2012.357
Whitby, M., Quirke, N.: Fluid flow in carbon nanotubes and nanopipes. Nat. Nanotechnol. 2, 87–94 (2007). https://doi.org/10.1038/nnano.2006.175
Whitby, M., Cagnon, L., Thanou, M., Quirke, N.: Enhanced fluid flow through nanoscale carbon pipes. Nano Lett. 8(9), 2632–2637 (2008). https://doi.org/10.1021/nl080705f
Wu, K., Chen, Z., Li, J., Li, X., Xu, J., Dong, X.: Wettability effect on nanoconfined water flow. Proc. Natl. Acad. Sci. USA. 114(13), 3358–3363 (2017a). https://doi.org/10.1073/pnas.1612608114
Wu, P.K., Nikolov, A.D., Wasan, D.T.: Capillary rise: validity of the dynamic contact angle models. Langmuir 33(32), 7862–7872 (2017b). https://doi.org/10.1021/acs.langmuir.7b01762
Yuan, Y., Rezaee, R., Verrall, M., Hu, S.Y., Zou, J., Testmanti, N.: Pore characterization and clay bound water assessment in shale with a combination of NMR and low-pressure nitrogen gas adsorption. Int. J. Coal Geol. 194, 11–21 (2018). https://doi.org/10.1016/j.coal.2018.05.003
Yuan, Y., Rezaee, R., Al-Khdheeawi, E.A., Hu, S.Y., Verrall, M., Zou, J., Liu, K.: Impact of composition on pore structure properties in shale: implications for micro-/mesopore volume and surface area prediction. Energy Fuels 33(10), 9619–9628 (2019). https://doi.org/10.1021/acs.energyfuels.9b02232
Zhang, S., Pu, H., Zhao, J.X.: Experimental and numerical studies of spontaneous imbibition with different boundary conditions: case studies of middle Bakken and Berea cores. Energy Fules (2019). https://doi.org/10.1021/acs.energyfuels.9b00909
Acknowledgements
V.I.B. acknowledges the Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support, as well as support from the Canada Research Chairs program. C.R.C. thanks the sponsors of the Tight Oil Consortium (TOC) and Ovintiv and Shell for support of his Chair position in Unconventional Gas and Light Oil Research in the Department of Geoscience at the University of Calgary. C.R.C. and B.P. also thank the funding support from a NSERC Collaborative Research and Development Grant (CRDPJ 505339 – 2016) grant for this research. B.P. also acknowledges funding support from the Chinese Scholarship Council and TOC, while M.A. extends her acknowledgements to the Egyptian Cultural Affairs and Missions Sector for scholarship support as well as NSERC support through a CREATE grant.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Pan, B., Clarkson, C.R., Atwa, M. et al. Spontaneous Imbibition Dynamics of Liquids in Partially-Wet Nanoporous Media: Experiment and Theory. Transp Porous Med 137, 555–574 (2021). https://doi.org/10.1007/s11242-021-01574-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11242-021-01574-6