Skip to main content
Log in

Unstable Displacement of Non-aqueous Phase Liquids with Surfactant and Polymer

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In this paper, we study two-phase multicomponent displacement of two immiscible fluids in both homogeneous and heterogeneous porous media. In many applications such as enhanced oil recovery, fluid mixing and spreading can be detrimental to the efficacy of the process. Here, we show that when an initially immobile phase is being displaced by a finite-size slug of solvents (surfactant and polymer), viscous fingering significantly enhances mixing and spreading of solvents. These effects are similar to those caused by medium heterogeneity and lead to poor displacement efficiency. We first quantify the displacement efficiency subject to different mobility ratios, Peclet numbers, and levels of medium heterogeneity. We observe a non-monotonic behavior in displacement efficiency as a function of mobility ratio, indicating that although stable frontal interface is desirable, miscible viscous fingering on the rear interface will eventually disintegrate the solvents slugs and reduce the displacement efficiency. Then, we show that miscible viscous fingering developing on the rear interface of the chemical slug could be greatly suppressed when viscosity contrast is gradually decreased using exponential or linear functions, leading to 10% increase in displacement efficiency while using the same amount of chemicals. To elucidate this low displacement efficiency, we study the evolution of mixing, spreading, and interfacial length and show that while higher viscosity ratios are quite effective in mobilizing the initially immobile phase in 1D displacements, they are in fact detrimental in 2D unstable displacements since they enhance mixing and spreading of solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abrams, A.: The influence of fluid viscosity, interfacial tension, and flow velocity on residual oil saturation left by waterflood. Soc. Pet. Eng. J. 15(05), 437 (1975)

    Article  Google Scholar 

  • Al-Wahaibi, Y., Grattoni, C., Muggeridge, A.: Drainage and imbibition relative permeabilities at near miscible conditions. J. Pet. Sci. Eng. 53(3–4), 239 (2006)

    Article  Google Scholar 

  • Amooie, M.A., Soltanian, M.R., Moortgat, J.: Hydrothermodynamic mixing of fluids across phases in porous media. Geophys. Res. Lett. 44(8), 3624 (2017)

    Article  Google Scholar 

  • Anton, L., Hilfer, R.: Trapping and mobilization of residual fluid during capillary desaturation in porous media. Phys. Rev. E 59(6), 6819 (1999)

    Article  Google Scholar 

  • Araktingi, U.G., Orr Jr., F.: Viscous fingering in heterogeneous porous media. SPE Adv. Technol. Ser. 1(01), 71 (1993)

    Article  Google Scholar 

  • Aramideh, S., Vlachos, P.P., Ardekani, A.M.: Pore-scale statistics of flow and transport through porous media. Phys. Rev. E 98(1), 013104 (2018a)

  • Aramideh, S., Borgohain, R., Naik, P.K., Johnston, C.T., Vlachos, P.P., Ardekani, A.M.: Multi-objective history matching of surfactant–polymer flooding. Fuel 228, 418 (2018b)

  • Avraam, D., Payatakes, A.: Flow regimes and relative permeabilities during steady-state two-phase flow in porous media. J. Fluid Mech. 293, 207 (1995)

    Article  Google Scholar 

  • Bachu, S., Bennion, B.: Effects of in-situ conditions on relative permeability characteristics of CO\(_2\)-brine systems. Environ. Geol. 54(8), 1707 (2008)

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Materials. Society of Petroleum Engineers, Dallas (1972)

    Google Scholar 

  • Blunt, M., Barker, J., Rubin, B., Mansfield, M., Culverwell, I., Christie, M.: Predictive theory for viscous fingering in compositional displacement. SPE Reserv. Eng. 9(01), 73 (1994)

    Article  Google Scholar 

  • Bolster, D., Dentz, M., Carrera, J.: Effective two-phase flow in heterogeneous media under temporal pressure fluctuations. Water Resour. Res. 45, W05408 (2009)

    Google Scholar 

  • Brooks, R.H., Corey, A.T.: Properties of porous media affecting fluid flow. J. Irrig. Drain. Div. 92(2), 61 (1966)

    Google Scholar 

  • Brown, C.L., Pope, G.A., Abriola, L.M., Sepehrnoori, K.: Simulation of surfactant-enhanced aquifer remediation. Water Resour. Res. 30(11), 2959 (1994)

    Article  Google Scholar 

  • Chatzis, I., Morrow, N.R.: Correlation of capillary number relationships for sandstone. Soc. Pet. Eng. J. 24(05), 555 (1984)

    Article  Google Scholar 

  • Chen, C.Y., Meiburg, E.: Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case. J. Fluid Mech. 371, 233 (1998)

    Article  Google Scholar 

  • Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media, vol. 2. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  • Chiogna, G., Hochstetler, D.L., Bellin, A., Kitanidis, P.K., Rolle, M.: Mixing, entropy and reactive solute transport. Geophys. Res. Lett. 39, L20405 (2012)

    Article  Google Scholar 

  • Chorin, A.J.: The instability of fronts in a porous medium. Commun. Math. Phys. 91(1), 103 (1983)

    Article  Google Scholar 

  • Chuoke, R., Van Meurs, P., van der Poel, C., et al.: The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media. Pet. Trans. AIME 216, 188–194 (1959)

    Google Scholar 

  • Claridge, E.: A method for designing graded viscosity banks. Soc. Pet. Eng. J. 18(05), 315 (1978)

    Article  Google Scholar 

  • Corey, A.T.: The interrelation between gas and oil relative permeabilities. Prod. Mon. 19(1), 38 (1954)

    Google Scholar 

  • Cushman, J.H., O’Malley, D.: Fickian dispersion is anomalous. J. Hydrol. 531, 161 (2015)

    Article  Google Scholar 

  • Dagan, G.: Flow and Transport in Porous Formations. Springer, New York (2012)

    Google Scholar 

  • Danckwerts, P.: The definition and measurement of some characteristics of mixtures. Appl. Sci. Res. Sect. A 3(4), 279 (1952)

    Article  Google Scholar 

  • De Simoni, M., Sánchez-Vila, X., Carrera, J., Saaltink, M.: A mixing ratios-based formulation for multicomponent reactive transport. Water Resour. Res. 43(7) (2007)

  • De Wit, A., Homsy, G.: Viscous fingering in periodically heterogeneous porous media. II. Numerical simulations. J. Chem. Phys. 107(22), 9619 (1997)

    Article  Google Scholar 

  • Delamaide, E., Zaitoun, A., Renard, G., Tabary, R.: Pelican Lake field: first successful application of polymer flooding in a heavy-oil reservoir. SPE Reserv. Eval. Eng. 17(03), 340 (2014)

    Google Scholar 

  • Delshad, M., Bhuyan, D., Pope, G., Lake, L., et al.: Effect of capillary number on the residual saturation of a three-phase micellar solution. In: SPE Enhanced Oil Recovery Symposium. Society of Petroleum Engineers (1986)

  • Delshad, M., Pope, G., Sepehrnoori, K.: A compositional simulator for modeling surfactant enhanced aquifer remediation, 1 formulation. J. Contam. Hydrol. 23(4), 303 (1996)

    Article  Google Scholar 

  • Dentz, M., Le Borgne, T., Englert, A., Bijeljic, B.: Mixing, spreading and reaction in heterogeneous media: a brief review. J. Contam. Hydrol. 120, 1 (2011)

    Article  Google Scholar 

  • Engelberts, W., Klinkenberg, L. et al.: Laboratory experiments on the displacement of oil by water from packs of granular material. In: 3rd World Petroleum Congress. World Petroleum Congress (1951)

  • Ennis-King, J.P., Paterson, L., et al.: Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. Spe Journal 10(03), 349 (2005)

    Article  Google Scholar 

  • Flory, P.J.: Principles of Polymer Chemistry. Cornell University Press, Ithaca (1953)

    Google Scholar 

  • Fulcher Jr., R.A., Ertekin, T., Stahl, C.: Effect of capillary number and its constituents on two-phase relative permeability curves. J. Pet. Technol. 37(02), 249 (1985)

    Article  Google Scholar 

  • Garcia, J.E., Pruess, K.: Flow instabilities during injection of CO\(_2\) into salineaquifers. Technical Report Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (US) (2003)

  • Garmeh, G., Izadi, M., Salehi, M., Romero, J.L., Thomas, C., Manrique, E.J.: Thermally active polymer to improve sweep efficiency of waterfloods: simulation and pilot design approaches. SPE Reserv. Eval. Eng. 15(01), 86 (2012)

    Google Scholar 

  • Gelhar, L.W., Axness, C.L.: Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour. Res. 19(1), 161 (1983)

    Article  Google Scholar 

  • Habermann, B., et al.: The efficiency of miscible displacement as a function of mobility ratio. Pet. Trans. AIME 219, 264–272 (1960)

    Google Scholar 

  • Hagoort, J.: Displacement stability of water drives in water-wet connate-water-bearing reservoirs. Soc. Pet. Eng. J. 14(01), 63 (1974)

    Article  Google Scholar 

  • Handy, L.L.: Determination of effective capillary pressures for porous media from imbibition data. Pet. Trans. AIME 219, 75–80 (1960)

    Google Scholar 

  • Hassanzadeh, H., Pooladi-Darvish, M., Keith, D. et al., Modelling of convective mixing in co storage. J. Can. Pet. Technol. 44(10) (2005)

  • Hidalgo, J.J., Dentz, M., Cabeza, Y., Carrera, J.: Dissolution patterns and mixing dynamics in unstable reactive flow. Geophys. Res. Lett. 42(15), 6357 (2015)

    Article  Google Scholar 

  • Jennings, R., Rogers, J., West, T.: Factors influencing mobility control by polymer solutions. J. Pet. Technol. 23(03), 391 (1971)

    Article  Google Scholar 

  • Jerauld, G., Davis, H., Scriven, L., et al.: Stability fronts of permanent form in immiscible displacement. In: SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers (1984)

  • Jha, B., Cueto-Felgueroso, L., Juanes, R.: Fluid mixing from viscous fingering. Phys. Rev. Lett. 106(19), 194502 (2011)

    Article  Google Scholar 

  • Jha, B., Cueto-Felgueroso, L., Juanes, R.: Synergetic fluid mixing from viscous fingering and alternating injection. Phys. Rev. Lett. 111(14), 144501 (2013)

    Article  Google Scholar 

  • Jiménez-Martínez, J., Porter, M.L., Hyman, J.D., Carey, J.W., Viswanathan, H.S.: Mixing in a three-phase system: enhanced production of oil-wet reservoirs by CO\(_2\) injection. Geophys. Res. Lett. 43(1), 196 (2016)

    Article  Google Scholar 

  • Juanes, R., Lie, K.A.: Numerical modeling of multiphase first-contact miscible flows. Part 2. Front-tracking/streamline simulation. Transp. Porous Media 72(1), 97 (2008)

    Article  Google Scholar 

  • Kapoor, V., Gelhar, L.W.: Transport in three-dimensionally heterogeneous aquifers: 1. Dynamics of concentration fluctuations. Water Resour. Res. 30(6), 1775 (1994)

    Article  Google Scholar 

  • Kon, W., Pitts, M.J., Surkalo, H., et al.: Mature waterfloods renew oil production by alkaline–surfactant–polymer flooding. In: SPE Eastern Regional Meeting. Society of Petroleum Engineers (2002)

  • Kou, J., Sun, S.: On iterative IMPES formulation for two phase flow with capillarity in heterogeneous porous media. Int. J. Numer. Anal. Model. Ser. B 1(1), 20 (2010)

    Google Scholar 

  • Krevor, S., Pini, R., Zuo, L., Benson, S.M.: Relative permeability and trapping of CO\(_2\) and water in sandstone rocks at reservoir conditions. Water Resour. Res. 48(2) (2012)

  • Lake, L.W., et al.: Enhanced Oil Recovery. Prentice Hall, Englewood Cliffs (1989)

    Google Scholar 

  • Le Borgne, T., Dentz, M., Bolster, D., Carrera, J., De Dreuzy, J.R., Davy, P.: Non-Fickian mixing: temporal evolution of the scalar dissipation rate in heterogeneous porous media. Adv. Water Resour. 33(12), 1468 (2010)

    Article  Google Scholar 

  • Le Borgne, T., Dentz, M., Villermaux, E.: The lamellar description of mixing in porous media. J. Fluid Mech. 770, 458 (2015)

    Article  Google Scholar 

  • Lenormand, R., Touboul, E., Zarcone, C.: Numerical models and experiments on immiscible displacements in porous media. J. Fluid Mech. 189, 165 (1988)

    Article  Google Scholar 

  • Londergan, J.T., Meinardus, H.W., Mariner, P.E., Jackson, R.E., Brown, C.L., Dwarakanath, V., Pope, G.A., Ginn, J.S., Taffinder, S.: DNAPL removal from a heterogeneous alluvial aquifer by surfactant-enhanced aquifer remediation. Groundw. Monit. Remediat. 21(4), 57 (2001)

    Article  Google Scholar 

  • Longeron, D.: Influence of very low interfacial tensions on relative permeability. Soc. Pet. Eng. J. 20(05), 391 (1980)

    Article  Google Scholar 

  • Maher, J.: Development of viscous fingering patterns. Phys. Rev. Lett. 54(14), 1498 (1985)

    Article  Google Scholar 

  • Mirzadeh, M., Bazant, M.Z.: Electrokinetic control of viscous fingering. Phys. Rev. Lett. 119(17), 174501 (2017)

    Article  Google Scholar 

  • Mishra, M., Martin, M., De Wit, A.: Differences in miscible viscous fingering of finite width slices with positive or negative log-mobility ratio. Phys. Rev. E 78(6), 066306 (2008)

    Article  Google Scholar 

  • Moortgat, J.: Viscous and gravitational fingering in multiphase compositional and compressible flow. Adv. Water Resour. 89, 53 (2016)

    Article  Google Scholar 

  • Mulligan, C.N., Yong, R., Gibbs, B.: Surfactant-enhanced remediation of contaminated soil: a review. Eng. Geol. 60(1–4), 371 (2001)

    Article  Google Scholar 

  • Nelson, R., Pope, G.: Phase relationships in chemical flooding. Soc. Pet. Eng. J. 18(05), 325 (1978)

    Article  Google Scholar 

  • Nittmann, J., Daccord, G., Stanley, H.E.: Fractal growth viscous fingers: quantitative characterization of a fluid instability phenomenon. Nature 314(6007), 141 (1985)

    Article  Google Scholar 

  • Pavone, D.: Observations and correlations for immiscible viscous-fingering experiments. SPE Reserv. Eng. 7(02), 187 (1992)

    Article  Google Scholar 

  • Peters, E.J., Flock, D.L.: The onset of instability during two-phase immiscible displacement in porous media. Soc. Pet. Eng. J. 21(02), 249 (1981)

    Article  Google Scholar 

  • Prouvost, L., Quintard, M.: Stability criteria for the design of graded polymer buffers. J. Pet. Sci. Eng. 3(4), 333 (1990)

    Article  Google Scholar 

  • Rabbani, H.S., Or, D., Liu, Y., Lai, C.Y., Lu, N.B., Datta, S.S., Stone, H.A., Shokri, N.: Suppressing viscous fingering in structured porous media. Proc. Natl. Acad. Sci. (2018). https://doi.org/10.1073/pnas.1800729115

  • Rashid, B., Bal, A.L., Williams, G.J., Muggeridge, A.H.: Using vorticity to quantify the relative importance of heterogeneity, viscosity ratio, gravity and diffusion on oil recovery. Comput. Geosci. 16(2), 409 (2012)

    Article  Google Scholar 

  • Reed, R.L., Healy, R.N.: Some physicochemical aspects of microemulsion flooding: a review. In: Shah, D.O. (ed.) Improved Oil Recovery by Surfactant and Polymer Flooding, pp. 383–437. Elsevier (1977)

  • Riaz, A., Tchelepi, H.A.: Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation. Phys. Fluids 16(12), 4727 (2004)

    Article  Google Scholar 

  • Riaz, A., Tchelepi, H.A.: Numerical simulation of immiscible two-phase flow in porous media. Phys. Fluids 18(1), 014104 (2006a)

  • Riaz, A., Tchelepi, H.A.: Influence of relative permeability on the stability characteristics of immiscible flow in porous media. Transp. Porous Media 64(3), 315 (2006b)

  • Sabet, N., Hassanzadeh, H., Abedi, J.: Control of viscous fingering by nanoparticles. Phys. Rev. E 96(6), 063114 (2017)

    Article  Google Scholar 

  • Saffman, P.: Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173, 73 (1986)

    Article  Google Scholar 

  • Sheng, J.: Modern Chemical Enhanced Oil Recovery: Theory and Practice. Gulf Professional Publishing, Houston (2010)

    Google Scholar 

  • Sheng, J.J.: A comprehensive review of alkaline–surfactant–polymer (ASP) flooding. Asia-Pac. J. Chem. Eng. 9(4), 471 (2014)

    Google Scholar 

  • Sigmund, P., Sharma, H., Sheldon, D., Aziz, K.: Rate dependence of unstable waterfloods. SPE Reserv. Eng. 3(02), 401 (1988)

    Article  Google Scholar 

  • Sudicky, E.A.: A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour. Res. 22(13), 2069 (1986)

    Article  Google Scholar 

  • Tang, G.Q., Kovscek, A.: High resolution imaging of unstable, forced imbibition in Berea sandstone. Transp. Porous Media 86(2), 617 (2011)

    Article  Google Scholar 

  • Taylor, G.I.: Diffusion by continuous movements. Proc. Lond. Math. Soc. 2(1), 196 (1922)

    Article  Google Scholar 

  • Tchelepi, H., Orr Jr., F., Rakotomalala, N., Salin, D., Woumeni, R.: Dispersion, permeability heterogeneity, and viscous fingering: acoustic experimental observations and particle-tracking simulations. Phys. Fluids A Fluid Dyn. 5(7), 1558 (1993)

    Article  Google Scholar 

  • Tchelepi, H., Orr Jr., F.: Interaction of viscous fingering, permeability heterogeneity, and gravity segregation in three dimensions. SPE Reserv. Eng. 9(04), 266 (1994)

    Article  Google Scholar 

  • Watts, J.: A compositional formulation of the pressure and saturation equations. SPE (Soc. Pet. Eng.) Reserv. Eng. (U. S.) 1(3), 243–252 (1986)

    Article  Google Scholar 

  • Weiss, W., Baldwin, R.: Planning and implementing a large-scale polymer flood. J. Pet. Technol. 37(04), 720 (1985)

    Article  Google Scholar 

  • Winsor, P.A.: Solvent Properties of Amphiphilic Compounds. Butterworths Scientific Publications, London (1954)

    Google Scholar 

  • Worawutthichanyakul, T., Mohanty, K.K.: Unstable immiscible displacements in oil-wet rocks. Transp. Porous Media 119(1), 205 (2017)

    Article  Google Scholar 

  • Yortsos, Y., Hickernell, F.: Linear stability of immiscible displacement in porous media. SIAM J. Appl. Math. 49(3), 730 (1989)

    Article  Google Scholar 

  • Yuan, Q., Zhou, X., Zeng, F., Knorr, K.D., Imran, M.: Investigation of concentration–dependent diffusion on frontal instabilities and mass transfer in homogeneous porous media. Can. J. Chem. Eng. 96(1), 323 (2018)

    Article  Google Scholar 

  • Zhang, H., Sorbie, K., Tsibuklis, N.: Viscous fingering in five-spot experimental porous media: new experimental results and numerical simulation. Chem. Eng. Sci. 52(1), 37 (1997)

    Article  Google Scholar 

  • Zhijian, Q., Yigen, Z., Xiansong, Z., Jialin, D., et al.: A successful ASP flooding pilot in Gudong oil field. In: SPE/DOE Improved Oil Recovery Symposium. Society of Petroleum Engineers (1998)

Download references

Acknowledgements

This research was made possible by a Grant from the Pioneer Oil Company. The authors would like to thank Bryan Clayton for his support and useful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo M. Ardekani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aramideh, S., Vlachos, P.P. & Ardekani, A.M. Unstable Displacement of Non-aqueous Phase Liquids with Surfactant and Polymer. Transp Porous Med 126, 455–474 (2019). https://doi.org/10.1007/s11242-018-1168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1168-1

Keywords

Navigation