Skip to main content
Log in

Permeability from 3D Porous Media Images: a Fast Two-Step Approach

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

An efficient methodology to calculate absolute permeability of porous media using a two-step algorithm is developed. In the first step, the creeping flow equations over the pore space are translated into a Darcy flow problem with the pore space being represented by appropriately chosen local flow conductivities. In the next step, a combined renormalization group and multi-level iterative Laplace solver approach is used to upscale the local conductivities to obtain the effective permeability for the full domain. The accuracy and computational efficiency of the proposed two-step local conductivity–Laplace scheme (LC-LAP) are tested against a FFT (fast Fourier transform) accelerated solver which uses a semi-implicit method for the pressure-linked equation (SIMPLE-FFT) and against a solver that features the GPGPU implementation of the multiple-relaxation-time lattice Boltzmann method (MRT-LBM). A detailed comparison is made by computing permeabilities from all three methods over model geometries and digitized images obtained from micron-scale-resolution computerized tomography (micro-CT) of sandstone rocks of varying porosities and heterogeneity levels. We observe an agreement between our method and either benchmark methods (SIMPLE-FFT and MRT-LBM) that is similar to the agreement between both benchmarks. On the samples tested, the computational performance advantage of the LC-LAP approach ranges from 10- to 40-fold compered to SIMPLE-FFT and 8- to 25-fold compared to MRT-LBM. The proposed method is suitable for fast computations and for computations over very large volumes (due to much lower memory and compute resource requirements) for determining single-phase permeabilities of medium- to high-permeability rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adler, P.M., Jacquin, C.G., Quiblier, J.A.: Flow in simulated porous media. Int. J. Multiph. Flow 16, 691–712 (1990)

    Article  Google Scholar 

  • Adler, P.M.: Porous Media: Geometry Transports. Butterworth–Heinemann, London (1992)

    Google Scholar 

  • Andr, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013). https://doi.org/10.1016/j.cageo.2012.09.008

    Article  Google Scholar 

  • Appel, M.: Digital rocks & special core analysis. In: Digital Rock Workshop, Rice University, Houston, 20–21 April 2017 (2017)

  • Arns, C.H., Adler, P.: Fast Laplace solver approach to pore scale permeability. Phys. Rev. E 97(2), 023303 (2018)

    Article  Google Scholar 

  • Arns, C.H., Bauget, F., Limaye, A., Sakellariou, A., Senden, T., Sheppard, A., Sok, R.M., Pinczewski, V., Bakke, S., Berge, L.I., Oren, P., Knackstedt, M.: Pore-scale characterization of carbonates using X-ray microtomography. SPE J. 10, 26–29 (2005). https://doi.org/10.2118/90368-PA

    Article  Google Scholar 

  • Bauget, F., Arns, C.H., Saadatfar, M., Sheppard, A., Sok, R.M., Pinczewski, V., Knackstedt, M.: What is the characteristic length scale for permeability? Direct analysis from microtomographic data. In: SPE-95950-MS, (2005). https://doi.org/10.2118/95950-MS

  • Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. (1992). https://doi.org/10.1016/0370-1573(92)90090-M

    Google Scholar 

  • Berryman, J.G., Blair, S.C.: Use of digital image analysis to estimate fluid permeability of porous materials: application of two-point correlation functions. J. Appl. Phys. 60, 1930–1938 (1986). https://doi.org/10.1063/1.337245

    Article  Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013). https://doi.org/10.1016/j.advwatres.2012.03.003

    Article  Google Scholar 

  • Blunt, M.J.: Flow in porous mediapore-network models multiphase flow. Curr. Opin. Colloid Interface Sci. 6, 197–207 (2001)

    Article  Google Scholar 

  • Botha, P.W.S.K., Sheppard, A.P.: Mapping permeability in low-resolution micro-CT images: a multiscale statistical approach. Water Resour. Res. 52, 4377–4398 (2016)

    Article  Google Scholar 

  • Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998). https://doi.org/10.1146/annurev.fluid.30.1.329

    Article  Google Scholar 

  • Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12–26 (1967)

    Article  Google Scholar 

  • DHumires, D., Ginzburg, I., Krafczyk, M., Lallemand, P., Luo, L.-S.: Multiple relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. A Math. Phys. Eng. Sci. 360, 437–451 (2002). https://doi.org/10.1098/rsta.2001.0955

    Article  Google Scholar 

  • DHumires, D., Ginzburg, I.: Viscosity independent numerical errors for lattice Boltzmann models: from recurrence equations to magic collision numbers. Comput. Math. Appl. 58, 823–840 (2009)

    Article  Google Scholar 

  • Dvorkin, J., Armbruster, M., Baldwin, C., Fang, Q., Derzhi, N., Gomez, C., Nur, B., Nur, A., Mu, Y.: The future of rock physics: computational methods vs. lab testing. First Break 26, 63–68 (2008)

    Google Scholar 

  • Dvorkin, J., Derzhi, N., Diaz, E., Fang, Q.: Relevance of computational rock physics. Geophysics 76, E141–E153 (2011). https://doi.org/10.1190/geo2010-0352.1

    Article  Google Scholar 

  • Flannery, B.P., Deckman, H.W., Roberge, W.G., Damico, K.L.: Three-dimensional X-ray microtomography. Science 237, 1439 (1987)

    Article  Google Scholar 

  • Green, C.P., Paterson, L.: Analytical three-dimensional renormalization for calculating effective permeabilities. Transp. Porous Media 68(2), 237–248 (2007)

    Article  Google Scholar 

  • Hanasoge, S., Agarwal, U., Tandon, K., Koelman, J.M.V.A.: Renormalization group theory outperforms other approaches in statistical comparison between upscaling techniques for porous media. Phys. Rev. E 96, 033313 (2017)

    Article  Google Scholar 

  • Hasimoto, H.: On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. J. Fluid Mech. 5, 317 (1959)

    Article  Google Scholar 

  • He, X., Luo, L.S.: Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56, 6811–6817 (1997)

    Article  Google Scholar 

  • Hou, T.Y., Wu, X.-H.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  Google Scholar 

  • Javadpour, F., Fisher, D., Unsworth, M.: Nanoscale gas flow in shale gas sediments. J. Can. Petrol. Technol. 46, 55–61 (2007)

    Google Scholar 

  • Javadpour, F., Shabro, V., Jeje, A., Torres-Verdn, C.: Modeling of coupled surface and drag forces for the transport and capture. In: Multiphysics Conference 2009, Lille (2009)

  • Javadpour, F., Jeje, A.: Modeling filtration of platelet-rich plasma in fibrous filters. Transp. Porous Med. 91, 677–696 (2012)

    Article  Google Scholar 

  • Jenny, P., Lee, S.H., Tchelepi, H.A.: Multi-scale finite-volume method for elliptic problems in subsurface flow simulation. J. Comput. Phys. 187, 47–67 (2003)

    Article  Google Scholar 

  • Jin, G., Patzek, T.W., Dmitry, B., Silin, D.B.: Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rock. In: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 90084-MS (2004)

  • Karim, M.R., Krabbenhoft, K.: New renormalization schemes for conductivity upscaling in heterogeneous media. Transp. Porous Media 85(3), 677–690 (2010)

    Article  Google Scholar 

  • Keehm, Y., Mukerji, T., Nur, A.: Permeability prediction from thin sections: 3D reconstruction and Lattice–Boltzmann flow simulation. Geophy. Res. Lett. 31, L04606 (2004)

    Article  Google Scholar 

  • Kelly, S., El-Sobky, H., Torres-Verdn, C., Balhoff, M.T.: Assessing the utility of FIB-SEM images for shale digital rock physics. Adv. Water Resour. 95, 302–316 (2016)

    Article  Google Scholar 

  • Khalili, A.D., Arns, J.Y., Hussain, F., Cinar, Y., Pinczewski, W.V., Arns, C.H.: Permeability upscaling for carbonates from the pore-scale using multi-scale Xray-CT images. SPE Reserv. Eval. Eng. 16, 353–368 (2013). https://doi.org/10.2118/152640-MS

    Article  Google Scholar 

  • King, P.R.: The use of renormalization for calculating effective permeability. Transp. Porous Media 4(1), 37–58 (1989)

    Article  Google Scholar 

  • Knackstedt, M.A., Arns, C.H., Limaye, A., Sakellariou, A., Senden, T.J., Sheppard, A.P., Sock, R.M., Pinczewski, W.V., Bunn, G.F.: Digital core laboratory: properties of reservoir core derived from 3D images. In: Proceedings of the SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Kuala Lumpur, Malaysia, (SPE 87009) (2004)

  • Knackstedt, M.A., Sheppard, A.P., Sahimi, M.: Pore network modelling of two-phase flow in porous rock: the effect of correlated heterogeneity. Adv. Water Resour. [26] 24, 257–277 (2001). https://doi.org/10.1016/S0309-1708(00)00057-9

    Article  Google Scholar 

  • Ladd, A.J.C.: Numerical simulations of particulate suspensions via a discretized Boltzmann equation: part 1: theoretical foundation. J. Fluid Mech. 271, 285–309 (1994)

    Article  Google Scholar 

  • Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61, 6546–6562 (2000)

    Article  Google Scholar 

  • Larson, B.C., Yang, W., Ice, G.E., Budai, J.D., Tischler, J.Z.: Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002)

    Article  Google Scholar 

  • Larson, R.E., Higdon, J.J.L.: A periodic grain consolidation model of porous media. Phys. Fluids A Fluid Dyn. 1, 38 (1989)

    Article  Google Scholar 

  • Leu, L., Berg, S., Enzmann, F., Armstrong, R.T., Kersten, M.: Fast X-ray microtomography of multiphase flow in berea sandstone: a sensitivity study on image processing. Transp. Porous Media 105, 451–469 (2014). https://doi.org/10.1007/s11242-014-0378-4

    Article  Google Scholar 

  • Li, H., Durlofsky, L.J.: Local-global upscaling for compositional subsurface flow simulation. Transp. Porous Media 111(3), 701–730 (2016)

    Article  Google Scholar 

  • Martys, N.S., Torquato, S., Bentz, D.P.: Universal scaling of fluid permeability for sphere packings. Phys. Rev. E 50, 403 (1994)

    Article  Google Scholar 

  • Martys, N., Chen, H.: Simulation of multicomponent fluids in complex three-dimensional geometries by the lattice Boltzmann method. Phys. Rev. E 53, 743–775 (1996). https://doi.org/10.1103/PhysRevE.53.743

    Article  Google Scholar 

  • Mostaghimi, P., Blunt, M.J., Bijeljic, B.: Computations of absolute permeability on micro-CT images. Math. Geosci. 45(1), 103–125 (2013)

    Article  Google Scholar 

  • Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70, 66135 (2004)

    Article  Google Scholar 

  • Patankar, S.V.: Numerical Heat Transfer and Fluid Flow. Series in Computational Methods in Mechanics and Thermal Sciences. CRC Press, Boca Raton (1980). https://doi.org/10.1017/S0022112086212148

    Book  Google Scholar 

  • Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation time (MRT) Lattice–Boltzmann models for multiphase flow. J. Comput. Phys. 224, 539–559 (2007). https://doi.org/10.1016/j.jcp.2006.10.023

    Article  Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes: The Art of Scientific Computing, 3rd edn. Cambridge University Press, New York (2007)

    Google Scholar 

  • Raoof, A., Hassanizadeh, S.M.: A new method for generating pore-network models of porous media. Transp. Porous Med. 81, 391–407 (2010)

    Article  Google Scholar 

  • Renard, P., Marsily, G.D.: Calculating equivalent permeability: a review. Adv. Water Resour. 20(5), 253–278 (1997)

    Article  Google Scholar 

  • Rumpf, H.C.H., Gupte, A.R.: Einflsse der Porositt und Korngrenverteilung im Widerstandsgesetz der Porenstrmung. Chemie Ing. Tech. CIT 43, 367–375 (1971)

    Article  Google Scholar 

  • Saxena, N., Mavko, G., Hofmann, R., Srisutthiyakorn, N.: Estimating permeability from thin sections without reconstruction: digital rock study of 3D properties from 2D images. Comput. Geosci. 102, 79–99 (2017). https://doi.org/10.1016/j.cageo.2017.02.014

    Article  Google Scholar 

  • Saxena, N., Hofmann, R., Alpak, F.O., Berg, S., Dietderich, J., Agarwal, U., Tandon, K., Hunter, S., Freeman, J., Wilson, O.B.: References and benchmarks for pore-scale flow simulated using microCT images of porous media and digital rocks. Adv. Water Resour. (2017). https://doi.org/10.1016/j.advwatres.2017.09.007

    Google Scholar 

  • Shabro, V., Prodanovic, M., Arns, C.H., Bryant, S.L., Torres-Verdn, C., Knackstedt, M.A.: Pore-scale modeling of two-phase flow. In: XVIII International Conference on Computational Methods in Water Resources, Barcelona (2010)

  • Shabro, V., Torres-Verdin, C., Javadpour, F., Sepehrnoori, K.: Finite-difference approximation for fluid flow simulation and calculation of permeability in porous media. Transp. Porous Media 94, 775–793 (2012)

    Article  Google Scholar 

  • Shah, S.M., Gray, F., Crawshaw, J.P., Boek, E.S.: Micro-computed tomography pore-scale study of flow in porous media: effect of voxel resolution. Adv. Water Resour. 95, 276–287 (2016)

    Article  Google Scholar 

  • Silin, D.B., Patzek, T.W.: Predicting relative-permeability curves directly from rock images. In: Proceedings of the SPE Annual Technical Conference Exhibition, New Orleans, LA, (SPE 124974) (2009)

  • Succi, S.: The Lattice Boltzmann Equation for Fluid Dynamics and Beyond. Oxford University Press, Oxford (2001). https://doi.org/10.1016/0370-1573(92)90090-M

    Google Scholar 

  • Tamamidis, P., Zhang, G., Assanis, D.N.: Comparison of pressure-based artificial compressibility methods for solving 3D steady incompressible viscous flows. J. Comput. Phys. 124, 1–13 (1996)

    Article  Google Scholar 

  • Tlke, J., Krafczyk, M.: TeraFLOP computing on a desktop PC with GPUs for 3D CFD. Int. J. Comut. Fluid Dyn. 22, 443 (2008)

    Article  Google Scholar 

  • Van Doormaal, J.P., Raithby, G.D.: Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transf. Part A Appl. 7, 147–163 (1984). https://doi.org/10.1080/01495728408961817

    Google Scholar 

  • Wiegmann, A.: Computation of the Permeability of Porous Materials from Their Microstructure by FFF-Stokes, vol. 129. Fraunhofer ITWM, Kaiserslautern (2007)

    Google Scholar 

  • Wildenschild, D., Sheppard, A.P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Adv. Water Resour. 51, 217–246 (2013)

    Article  Google Scholar 

  • Yeo, I.-W., Zimmerman, R.W.: Accuracy of the renormalization method for computing effective conductivities of heterogeneous media. Transp. Porous Media 45(1), 129–138 (2001)

    Article  Google Scholar 

  • Zick, A.A., Homsy, G.M.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 13–456 (1982). https://doi.org/10.1080/10618560802238275

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge productive discussions with Shell colleagues, Justin Freeman, Kunj Tandon, Nitish Nair, Nishank Saxena, Ronny Hoffmann, and Steffen Berg. Rock geometries used in the benchmarking section and results from SIMPLE-FFT and MRT-LBM methods provided by Jesse Dietderich, Matthias Appel, Steffen Berg, and Nishank Saxena are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umang Agarwal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 514 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, U., Alpak, F.O. & Koelman, J.M.V.A. Permeability from 3D Porous Media Images: a Fast Two-Step Approach. Transp Porous Med 124, 1017–1033 (2018). https://doi.org/10.1007/s11242-018-1108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-018-1108-0

Keywords

Navigation