Skip to main content
Log in

Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The co-occurrence of gravity-driven drainage and forced convective drying in a macroporous medium is investigated in this study. The drainage and drying processes of fully saturated porous asphalt (PA) specimens placed in a custom-made mini wind tunnel are documented with neutron radiography (NR). Six PA specimens of dimensions \(180\times 10\times 30\,\hbox {mm}^{3}\) with a maximum aggregate size of 8 or 11 mm are used in the experiments. In the first few minutes of each experiment, there is significant moisture loss in all the specimens due to gravity-driven drainage. Most of the residual water retention is observed at the bottom region of the specimens due to the strong impact of gravity-driven drainage in the upper regions. The specimens are subjected to many hours of airflow at their top surface; however, forced convection from turbulent airflow near the upper part of the specimens is found to have a minor influence on moisture loss when there are no water clusters in the upper regions of the specimens. This points to the strong resistance to evaporation in PA as a result of the large vapor diffusion lengths. By combining neutron radiography and microcomputer tomography (X-ray \(\upmu \)-CT) images, saturated and unsaturated flows in the pores are distinguished. Fluid flow path during air entry and water redistribution is further analyzed by reconstructing the real three-dimensional pore geometry of the specimens from X-ray \(\upmu \)-CT scans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aboufoul, M., Garcia, A.: Factors affecting hydraulic conductivity of asphalt mixture. Mater. Struct. 50(2), 116 (2017). doi:10.1617/s11527-016-0982-6

    Article  Google Scholar 

  • Alvarez, G., Flick, D.: Modelling turbulent flow and heat transfer using macro-porous media approach used to predict cooling kinetics of stack of food products. J. Food Eng. 80, 391–401 (2007)

    Article  Google Scholar 

  • Amiri, A., Vafai, K., Kuzay, T.M.: Effects of boundary conditions on non-Darcian heat transfer through porous media and experimental comparisons. Numer. Heat Transf. Part A: Appl. 27(6), 651–664 (1995)

    Article  Google Scholar 

  • Bergstad, M., Shokri, N.: Evaporation of NaCl solution from porous media with mixed wettability. Geophys. Res. Lett. 43(9), 4426–4432 (2016)

    Article  Google Scholar 

  • Braudeau, E., et al.: New device and method for soil shrinkage curve measurement and characterization. Soil Sci. Soc. Am. J. 63, 525–535 (1999)

    Article  Google Scholar 

  • Calmidi, V.V., Mahajan, R.L.: Forced convection in high porosity metal foams. J. Heat Transf. 122, 557–565 (2000)

    Article  Google Scholar 

  • Cui, Y.-J., Zornberg, J.G.: Water balance and evapotranspiration monitoring in geotechnical and geoenvironmental engineering. Geotech. Geol. Eng. 26(6), 783–898 (2008). doi:10.1007/s10706-008-9198-z

    Article  Google Scholar 

  • Defraeye, T., Blocken, B., Carmeliet, J.: Analysis of convective heat and mass transfer coefficients for convective drying of a porous flat plate by conjugate modelling. Int. J. Heat Mass Transf. 55, 112–124 (2012). doi:10.1016/j.ijheatmasstransfer.2011.08.047

    Article  Google Scholar 

  • Dong, H., Blunt, M.: Pore-network extraction from micro-computerized-tomography images. Phys. Rev. E 80(3), 36307 (2009). doi:10.1103/PhysRevE.80.036307. (Accessed September 3, 2014)

  • Feldkamp, L.A., Davis, L.C., Kress, J.W.: Practical cone-beam algorithm. J. Opt. Soc. Am. A 1(6), 612–619 (1984)

    Article  Google Scholar 

  • Fenwick, D.H., Blunt, M.J.: Three-dimensional modeling of three phase imbibition and drainage. Adv. Water Resour. 21(2), 121–143 (1998)

    Article  Google Scholar 

  • Geller, J.T., Hunt, J.R.: Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour. Res. 29(4), 833–845 (1993)

    Article  Google Scholar 

  • van Genuchten, M.T., Wierenga, P.J.: Mass transfer studies in sorbing porous media: II. Experimental evaluation with tritium (3H2O)1. Soil Sci. Soc. Am. J. 41, 272–278 (1977)

    Article  Google Scholar 

  • Gostick, J.T., et al.: Pore network modeling of fibrous gas diffusion layers for polymer electrolyte membrane fuel cells. J. Power Sources 173(1), 277–290 (2007)

    Article  Google Scholar 

  • Grattoni, C.A., Jing, X.D., Dawe, R.A.: Dimensionless groups for three-phase gravity drainage flow in porous media. J. Pet. Sci. Eng. 29, 53–65 (2001)

    Article  Google Scholar 

  • Haghighi, E., et al.: Evaporation rates across a convective air boundary layer are dominated by diffusion. Water Resour. Res. 49(3), 1602–1610 (2013)

    Article  Google Scholar 

  • Haines, W.B.: Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J. Agric. Sci. 20(1), 97–116 (1930)

    Article  Google Scholar 

  • Hassanein, R., Lehmann, E., Vontobel, P.: Methods of scattering corrections for quantitative neutron radiography. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 542, 353–360 (2005)

  • Hillel, D.: Soil and Water. Physical Principles and Processes. Academic Press, New York (1971)

    Google Scholar 

  • Hirsch, L.M., Thompson, A.H.: Size-dependent scaling of capillary invasion including buoyancy and pore size distribution effects. Phys. Rev. E 50(3), 2069–2086 (1994). doi:10.1103/PhysRevE.50.2069

    Article  Google Scholar 

  • Hoogland, F., Lehmann, P., Or, D.: Drainage dynamics controlled by corner flow: application of the foamdrainage equation. Water Resour. Res. 52, 8402–8412 (2016)

    Article  Google Scholar 

  • James, C., et al.: Numerical and experimental data set for benchmarking hygroscopic buffering models. Int. J. Heat Mass Transf. 53(19–20), 3638–3654 (2010). doi:10.1016/j.ijheatmasstransfer.2010.03.039

    Article  Google Scholar 

  • Kuznetsov, A.V., Nield, D.A.: Thermally developing forced convection in a bidisperse porous medium. J. Porous Media 9(5), 393–402 (2006)

    Article  Google Scholar 

  • Lal, S., et al.: Investigation of Water Uptake in Porous Asphalt Concrete Using Neutron Radiography. Transport in Porous Media. 105(431–450), 2014 (2014). doi:10.1007/s11242-014-0376-6. Accessed October 13

  • Lehmann, E.H., Vontobel, P., Wiezel, L.: Properties of the radiography facility NEUTRA at SINQ and its potential for use as European reference facility. Nondestruct. Test. Evaluat. 16, 191–202 (2001)

    Article  Google Scholar 

  • Moghaddam, A.A., et al.: Kinematics in a slowly drying porous medium: reconciliation of pore network simulations and continuum modeling. Phys. Fluids. 29, 022102 (2017). doi:10.1063/1.4975985

    Article  Google Scholar 

  • Moghaddam, M.B., Rasaei, M.R.: Experimental Study of the Fracture and Matrix Effects on Free-Fall Gravity Drainage With Micromodels. SPE J., 20(2), 324–336 (2015). https://www.onepetro.org/journal-paper/SPE-171555-PA. Accessed 9 Feb 2016

  • Partl, M.N., et al.: Characterization of water sensitivity of asphalt mixtures with coaxial shear test. Road Mater. Pavement Des., 9(2), pp. 247–270 (2008). http://www.scopus.com/inward/record.url?eid=2-s2.0-47249155265&partnerID=tZOtx3y1

  • Poulikakos, L.D., et al.: Forced convective drying of wet porous asphalt imaged with neutron radiography. Adv. Eng. Mater., 15(11), 1136–1145 (2013). doi:10.1002/adem.201300027. Accessed 13 Oct 2014

  • Poulikakos, L.D., et al.: Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. Appl. Radiat. Isotopes, 77, 5–13 (2013). http://www.ncbi.nlm.nih.gov/pubmed/23500651. Accessed 13 Oct 2014

  • Poulikakos, L.D., Partl, M.N.: A multi-scale fundamental investigation of moisture induced deterioration of porous asphalt concrete. Construct. Build. Mater., 36, pp. 1025–1035 (2012). http://linkinghub.elsevier.com/retrieve/pii/S0950061812002735. Accessed 17 Oct 2014

  • Poulikakos, L.D., Partl, M.N.: Investigation of porous asphalt microstructure using optical and electron microscopy. J. Microsc. 240(March), 145–154 (2010)

    Article  Google Scholar 

  • Prazak, J., et al.: Oscillation phenomena in gravity-driven drainage in coarse porous media. Water Resour. Res. 28(7), 1849–1855 (1992)

    Article  Google Scholar 

  • Shokri, N., Sahimi, M., Or, D.: Morphology, propagation dynamics and scaling characteristics of drying fronts in porous media. Geophys. Res. Lett. 39(9), 1–5 (2012)

    Article  Google Scholar 

  • Teng, Y., et al.: A visualization study on two-phase gravity drainage in porous media by using magnetic resonance imaging. Magnetic Reson. Imag. 34(7), 855–863 (2016). doi:10.1016/j.mri.2016.03.004

    Article  Google Scholar 

  • Vafai, K.: Convective flow and heat transfer in variable-porosity media. J. Fluid Mech., 147, 233–259 (1984). http://www.journals.cambridge.org/abstract_S002211208400207X

  • Vafai, K., Alkire, R.L., Tien, C.L.: An experimental investigation of heat transfer in variable porosity media. Trans. ASME 107, 642–647 (1985)

    Article  Google Scholar 

  • Watts, G.R., Chandler-Wilde, S.N.: Morgan, Pa: The combined effects of porous asphalt surfacing and barriers on traffic noise. Appl. Acoust. 58, 351–377 (1999)

    Article  Google Scholar 

  • Yang, M., Yanful, E.K.: Water balance during evaporation and drainage in cover soils under different water table conditions. Adv. Environ. Res. 6(4), 505–521 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a Swiss National Science Foundation (SNSF) Grant (200021_143651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sreeyuth Lal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, S., Poulikakos, L.D., Jerjen, I. et al. Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography. Transp Porous Med 118, 119–142 (2017). https://doi.org/10.1007/s11242-017-0850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0850-z

Keywords

Navigation