Skip to main content
Log in

Microscopic Fluid Dynamic Simulation of the Metal Foam Using Idealized Cell Structure

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Simple, yet accurate representation of cell structure is essential when conducting a multidimensional thermo-fluid simulation on porous medium in microscopic scale. Presented in this paper is a study of the fluid dynamic simulation of the nickel metal foam’s unit cell domain using idealized cell structure. Commercially available multi-physics package, COMSOL, was utilized to conduct numerical simulation. Simplified methodology to create an idealized cell structure of metal foam is presented, and simulation results on pressure drop are discussed. Nonlinear solver in COMSOL was utilized to solve the unidirectional pressure drop and permeability across the cell structure. Obtained results showed confirmed agreement to the data obtained from the experiment and previous researchers, verifying the practicality and applicability of the proposed unit cell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Arisetty, S., Prasad, A.K., Advani, S.G.: Metal foams as flow field and gas diffusion layer in direct methanol fuel cells. J. Power Source 165, 49–57 (2007)

    Article  Google Scholar 

  • Bagci, O., Dukhan, N., Kavurmacioglu, L.A.: Forced-convection measurements in the fully developed and exit regions of open-cell metal foam. Transp. Porous Media 109, 49–57 (2015)

    Article  Google Scholar 

  • Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46, 559–632 (2001)

    Article  Google Scholar 

  • Bhattacharya, A., Calmidi, A.A., Mahajan, R.L.: Thermo physical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)

    Article  Google Scholar 

  • Bonnet, J.P., Topin, F., Tadrist, L.: Flow laws in metal foams: compressibility and pore size effects. Transp. Porous Med. 73, 233–254 (2008)

  • Boomsma, K., Poulikakos, D.: The effects of compression and pore size variations on the liquid flow characteristics in metal foams. J. Fluids Eng. 124, 263–272 (2002)

    Article  Google Scholar 

  • Chandan, A., Rees, N.V., Steinberger-Wilckens, R., Self, V., Richmond, J.: Improving the design of gas diffusion layer for intermediate temperature polymer electrolyte fuel cells using a sensitivity analysis: a Multiphysics approach. Int. J. Hydrogen Energy 40, 16745–16759 (2015)

    Article  Google Scholar 

  • Despois, J.F., Mortensen, A.: Permeability of open-pore microcellular materials. Acta Mater. 53, 1381–1388 (2005)

    Article  Google Scholar 

  • Du Plessis, J.P.: Pressure drop prediction for flow through high porosity metallic foams. Chem. Eng. Sci. 49, 3545–3553 (1994)

    Article  Google Scholar 

  • Dukhan, N., Picon-Feliciano, R., Alvarez-Hernandez, A.R.: Air flow through compressed and uncompressed aluminum foam: measurements and correlations. J. Fluids Eng. 128, 1004–1012 (2006)

    Article  Google Scholar 

  • Edouard, D., Lacroix, M., Pham, C., Mbodji, M., Pham-Huu, C.: Experimental measurements and multiphase flow models in solid SiC foam beds. AIChE J. 54, 2823–2832 (2008)

    Article  Google Scholar 

  • Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. Deutsch. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  • Fourie, J.G., Du Plessis, J.P.: Pressure drop modelling in cellular metallic foams. Chem. Eng. Sci. 57, 2781–2789 (2002)

    Article  Google Scholar 

  • Hooman, K., Dukhan, N.: A theoretical model with experimental verification to predict hydrodynamics of foams. Transp. Porous Med. 100, 393–406 (2013)

  • Hwang, J.J., Hwang, G.J., Yeh, R.H., Chao, C. H.: Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams. Trans. ASME 124 (2002)

  • Khayargoli P., Loya V., Lefebvre L.-P. Medraj M.: The impact of microstructure on the permeability of metal foams. In: Proceedings of CSME Forum, pp. 220-228. London, Canada (2004)

  • Krishnan, S., Murthy, J.Y., Garimella, S.V.: Direct simulation of transport in open-cell metal foam. ASME J. Heat Transf. 128, 793–799 (2006)

    Article  Google Scholar 

  • Kumar, A., Reddy, R.G.: Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates. J. Power Sources 114, 54–62 (2002)

    Article  Google Scholar 

  • Lage, J.L., Antohe, B.V.: Darcy’s experiments and the deviation to nonlinear flow regime. J. Fluids Eng. 122, 619–625 (2000)

    Article  Google Scholar 

  • Lucci, F., Torre, A.D., von Rickenbach, J., Montenegro, G., Poulikakos, D., Eggenschwiler, P.D.: Performance of randomized Kelvin cell structures as catalytic substrates: mass-transfer based analysis. Chem. Eng. Sci. 112, 143–151 (2014)

    Article  Google Scholar 

  • Madani, B., Topin, F., Rigollet, F., Tadrist, L.: Flow laws in metallic foams: experimental determination of inertial and viscous contribution. J. Porous Media 10, 51–70 (2007)

    Article  Google Scholar 

  • Miwa, S., Revankar, S.T.: Hydrodynamic characterization of nickel metal foam, part 1: single-phase permeability. Transp. Porous Media 80, 269–279 (2009)

    Article  Google Scholar 

  • Miwa, S., Revankar, S.T.: Hydrodynamic characterization of nickel metal foam, part 2: effects of pore structure and permeability. Transp. Porous Media 89, 323–336 (2011)

    Article  Google Scholar 

  • Moreira, E.A., Innocentini, M.D.M., Coury, J.R.: Permeability of ceramic foams to compressible and incompressible flow. J. Eur. Ceram. Soc. 24, 3209–3218 (2004)

    Article  Google Scholar 

  • Oppenheimer, S.M., Dunand, D.C.: Finite element modeling of creep deformation in cellular metals. Acta Mater. 55, 3825–3834 (2007)

    Article  Google Scholar 

  • Richardson, J.T., Remue, D., Peng, Y.: Properties of ceramic foam catalyst supports: pressure drop. Appl. Catal. 204, 19–32 (2000)

    Article  Google Scholar 

  • Sobieski, W., Zhang, Q., Liu, C.: Predicting tortuosity for airflow through porous beds consisting of randomly packed spherical particles. Transp. Porous Media 93, 431–451 (2012)

    Article  Google Scholar 

  • Stemmet, C.P., van der Schaaf, M.M.J., Kuster, B.F.M., Schouten, J.C.: Hydrodynamics of gas-liquid counter-current flow in solid foam packings. Chem. Eng. Sci. 60, 6422–6429 (2005)

    Article  Google Scholar 

  • Vafai, K., Tien, C.L.: Boundary and inertia effects on convective mass transfer in porous media. Int. J. Heat Mass Transf. 25, 1183–1190 (1980)

    Article  Google Scholar 

  • Walter, J., Zurawski, A., Montgomery, D., Thornburg, M., Revankar, S.T.: Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J. Power Sources 179, 335–339 (2008)

    Article  Google Scholar 

  • Zhao, R., Zhang, S., Liu, J., Gu, J.: A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J. Power Sources 299, 557–577 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichiro Miwa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miwa, S., Kane, C. & Revankar, S.T. Microscopic Fluid Dynamic Simulation of the Metal Foam Using Idealized Cell Structure. Transp Porous Med 115, 35–51 (2016). https://doi.org/10.1007/s11242-016-0750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0750-7

Keywords

Navigation