Skip to main content
Log in

A Continuous–Discontinuous Approach to Simulate Heat Transfer in Fractured Media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A macroscopic framework to model heat transfer in materials and composites, subjected to physical degradation, is proposed. The framework employs the partition of unity concept and captures the change from conduction-dominated transfer in the initial continuum state to convection and radiation-dominated transfer in the damaged state. The underlying model can be directly linked to a mechanical cohesive zone model, governing the initiation and subsequent growth and coalescence of micro-cracks. The methodology proved to be applicable for quasi-static, periodic, and transient problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A :

Area (m2)

A i :

Amplitude of the periodic temperature fluctuation on the inner wall surface (K)

B :

Matrix containing the derivatives of the finite element shape functions (m−1)

c :

Specific heat capacity (J/(kg K))

C b :

Black body constant (W/(m2 K4))

e :

Emission factor

F T :

Temperature factor

hi, he:

Heat transfer coefficient (indoor, outdoor) (W/(m2 K))

\({{\mathcal{H}}_{\Gamma_{\rm d}}}\) :

Heaviside function

k :

Effective thermal conductivity (W/(m K))

\({K_{\Gamma_{\rm d}}}\) :

Thermal conductivity of the material bond (W/(m K))

K Ω :

Thermal conductivity matrix of the continuum material (W/(m K))

n :

Normal vector

N :

Vector containing finite element shape functions

Nu :

Dimensionless Nusselt number

Q :

Energy flow rate (J/s)

q :

Total heat flux vector (J/(m2 s))

q eff :

Energy exchange via the undamaged material bond (J/(m2 s))

\({\bar{{q}}}\) :

Energy exchange via an internal or external boundary (J/(m2 s))

\({R_{\Gamma_{\rm d}}}\) :

Effective thermal resistance of the material bond ((m K)/W)

t :

Time [s]

T :

Absolute temperature (K)

\({\hat{{T}}}\) :

Regular component of the absolute temperature (K)

\({\tilde {T}}\) :

Enhanced component of the absolute temperature (K)

w :

Variational temperature field (K)

α :

Relative interface position

γ :

1 Unit meter (m)

λ :

Thermal conductivity of the medium inside the discontinuity (W/(m K))

\({\phi_{\rm i}}\) :

Phase angle of the periodic temperature fluctuation on the inner wall surface (°)

ρ :

Average mass density (kg/m3)

ω :

Damage variable

Γ:

Boundary

Γd :

Discontinuity

Ω:

Body

References

  • Alfaiate, J., Moonen, P., Sluys, L.J., Carmeliet, J.: On the use of strong discontinuity formulations for the modeling of preferential moisture uptake in fractured porous media. Comput. Methods Appl. Mech. Eng. (2010). doi:10.1016/j.cma.2010.05.004

  • Barenblatt G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    Article  Google Scholar 

  • Carmeliet, J., Delerue, J.-F., Vandersteen K., Roels, S.: Three-dimensional liquid transport in concrete cracks. Int. J. Numer. Anal. Methods Geomech. (2004). doi:10.1002/nag.373

  • DeBoer R.: Theory of Porous Media—Highlights in the Historical Development and Current State. Springer, Berlin (2000)

    Google Scholar 

  • de Borst, R., Remmers, J.J.C., Needleman, A., Abellan, M.-A.: Discrete vs smeared crack models for concrete fracture: bridging the gap. Int. J. Numer. Anal. Methods Geomech. (2004). doi:10.1002/nag.374

  • Dugdale D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  • Fagerström, M., Larsson, R.: A thermo-mechanical cohesive zone formulation for ductile fracture. J. Mech. Phys. Solids (2008). doi:10.1016/j.jmps.2008.06.002

  • Hillerborg, Modeer, M., Pettersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. (1976). doi:10.1016/0008-8846(76)90007-7

  • Janssen, H., Blocken, B., Carmeliet, J.: Conservative modeling of the moisture and heat transfer in building components under atmospheric excitation. Int. J. Heat Mass Transf. (2007). doi:10.1016/j.ijheatmasstransfer.2006.06.048

  • Jirásek, M., Zimmermann, T.: Embedded crack model. Part II: combination with smeared cracks. Int. J. Numer. Methods Eng. (2001). doi:10.1002/1097-0207(20010228)50:6<1291::AID-NME12>3.0.CO;2-Q

  • Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. (1996). doi:10.1016/S0045-7825(96)01087-0

  • Moës, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. (1999). doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J

  • Moonen, P., Carmeliet, J., Sluys, L.J.: A continuous-discontinuous approach to simulate fracture processes in quasi-brittle materials. Philos. Mag. (2008). doi:10.1080/14786430802566398

  • Moonen, P., Sluys, L.J., Carmeliet, J.: A continuous-discontinuous approach to simulate physical degradation processes in porous media. Int. J. Numer. Methods Eng. (2010). doi:10.1002/nme.2924

  • Pruess, K., Oldenburg, C., Moridis, G.: TOUGH2 User’s Guide, Version 2.0, Lawrence Berkeley National Laboratory Report LBNL-43134, Berkeley, November (1999)

  • Ren, Z., Bićanić, N.: Simulation of progressive fracturing under dynamic loading conditions. Commun. Numer. Methods Eng. (1997). doi:10.1002/(SICI)1099-0887(199702)13:2<127::AID-CNM44>3.0.CO;2-8

  • Réthoré, J., de Borst, R., Abellan, M.-A.: A two-scale approach for fluid flow in fractured porous media. Int. J. Numer. Methods Eng. (2007). doi:10.1002/nme.1962

  • Réthoré, J., de Borst, R., Abellan, M.-A.: A two-scale model for fluid flow in an unsaturated porous medium with cohesive cracks. Comput. Mech. (2008). doi:10.1007/s00466-007-0178-6

  • Roels, S., Vandersteen, K., Carmeliet, J.: Measuring and simulating moisture uptake in a fractured porous medium. Adv. Water Resour. (2003). doi:10.1016/S0309-1708(02)00185-9

  • Roels, S., Moonen, P., de Proft, K., Carmeliet, J.: A coupled discrete-continuum approach to simulate moisture effects on damage processes in porous materials. Comput. Methods Appl. Mech. Eng. (2006). doi:10.1016/j.cma.2005.05.051

  • Secchi, S., Simoni, L., Schrefler, B.A.: Cohesive fracture growth in a thermoelastic bi-material medium. Comput. Struct. (2004). doi:10.1016/j.compstruc.2004.03.059

  • Segura, J.M., Carol, I.: Coupled HM analysis using zero-thickness interface elements with double nodes. Part I: theoretical model. Int. J. Numer. Anal. Methods Geomech. (2008). doi:10.1002/nag.735

  • Simone, Wells, G.N., Sluys, L.J.: From continuous to discontinuous failure in a gradient-enhanced continuum damage model. Comput. Methods Appl. Mech. Eng. (2003). doi:10.1016/S0045-7825(03)00428-6

  • Therrien, R., Sudicky, E.A.: Three-dimensional analysis of variably-saturated flow and solute transport in discretely-fractured porous media. J. Contam. Hydrol. (1996). doi:10.1016/0169-7722(95)00088-7

  • Vandersteen, K., Carmeliet, J., Feyen, J.: A network approach to derive unsaturated hydraulic properties of a roughwalled fracture. Transp. Porous Med. (2003). doi:10.1023/A:1021150732466

  • Wells, G.N., Sluys, L.J.: A new method for modeling cohesive cracks using finite elements. Int. J. Numer. Methods Eng. (2001). doi:10.1002/nme.143

  • Wu, Y.S., Haukwa, C., Bodvarsson, G.S.: A site-scale model for fluid and heat flow in the unsaturated zone of Yucca Mountain, Nevada. J. Contam. Hydrol. (1999). doi:10.1016/S0169-7722(99)00014-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Moonen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moonen, P., Sluys, L.J. & Carmeliet, J. A Continuous–Discontinuous Approach to Simulate Heat Transfer in Fractured Media. Transp Porous Med 89, 399–419 (2011). https://doi.org/10.1007/s11242-011-9777-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-011-9777-y

Keywords

Navigation