Skip to main content

Advertisement

Log in

Challenges and prospects for the in-vitro conservation of plants having anticarcinogenic potential in the Western Himalaya, India

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The study of Himalayan phyto-diversity has a long history, especially when it comes to estimating the plant’s value. The Western Himalayas have traditionally been home to a vast number of anti-cancerous plants that have been exposed to a variety of natural and man-made stresses over the previous decades. Dependency on plant-based anti-cancerous agents has increased in recent years due to expansion in the herbal medicine sectors. As a result, there is a growing demand for the discovery and R&D in plant-based natural compounds with anti-cancerous properties. Illegal harvesting, high anthropogenic pressure, grazing, and poorly organized tourism jeopardize the survival of the several anti-cancerous plants in their natural habitats. As a result, biotechnological strategies to protect and improve rare and endangered plant species, particularly those facing extinction, are necessary. A variety of biotechnological techniques are being investigated for the conservation and protection of the Phyto-diversity for desired qualities, each with its own set of benefits and drawbacks. This review summarizes different in-vitro conservation techniques with their fundamental protocols, cost-cutting measures as well as downsides. This review will be beneficial to researchers, as well as pharmaceutical industries, and will be providing sustainable management techniques for their conservation.

Key message

By this review we want to give the key message that “In vitro techniques are more beneficial for the conservation of anti-carcinogenic plants as well as secondary metabolites production”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmed MA, Miao M, Pratsinakis ED, Zhang H, Wang W, Yuan Y, Lyu M, Iftikhar J, Yousef AF, Madesis P (2021) Protoplast isolation, fusion, culture and transformation in the woody plant Jasminum spp. Agriculture 11(8):699

    Article  Google Scholar 

  • Akeroyd J (2006) Plant taxonomy and reintroduction. Taxonomy and plant preservation. University Press, Cambridge, UK, pp 221–227

    Google Scholar 

  • Andreone A, de Hollander D (2020) A case report on the effect of micrografting in the healing of chronic and complex burn wounds. Int J Burns Trauma 10(1):15

    Google Scholar 

  • Antony Ceasar S, Ignacimuthu S (2008) Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol-Plant 44(5):427–435

  • Ardalani H, Avan A, Ghayour-Mobarhan M (2017) Podophyllotoxin: a novel potential natural anticancer agent. Avicenna J Phytomed 7(4):285

    CAS  Google Scholar 

  • Arumugam N, Bhojwani SS (1990) Somatic embryogenesis in tissue cultures of Podophyllum hexandrum. Can J Bot 68(3):487–491

    Article  Google Scholar 

  • Ayoob I, Hazari YM, Lone SH, Khuroo MA, Fazili KM, Bhat KA (2017) Phytochemical and cytotoxic evaluation of Peganum harmala: structure activity relationship studies of harmine. Chem Select 2(10):2965–2968

    CAS  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63(2):147–173

    Article  CAS  Google Scholar 

  • Bartz R, Kowarik I (2019) Assessing the environmental impacts of invasive alien plants: a review of assessment approaches. NeoBiota 43:69–99

    Article  Google Scholar 

  • Batool R, Aziz E, Tan BK-H, Mahmood T (2017) Rumex dentatus inhibits cell proliferation, arrests cell cycle, and induces apoptosis in MDA-MB-231 cells through suppression of the NF-κB pathway. Front Pharmacol 8:731

    Article  Google Scholar 

  • Baust JG, Gao D, Baust JM (2009) Cryopreservation: an emerging paradigm change. Organogenesis 5(3):90–96

    Article  Google Scholar 

  • Bednarek PT, Orłowska R (2020) Plant tissue culture environment as a switch-key of (epi) genetic changes. Plant Cell Tissue Organ Cult 140(2):245–257

    Article  Google Scholar 

  • Beers J, Linask KL, Chen JA, Siniscalchi LI, Lin Y, Zheng W, Rao M, Chen G (2015) A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture. Sci Rep 5(1):11319

    Article  CAS  Google Scholar 

  • Bhattacharyya P, Kumaria S, Bose B, Paul P, Tandon P (2017) Evaluation of genetic stability and analysis of phytomedicinal potential in micro-propagated plants of Rumex nepalensis–a medicinally important source of pharmaceutical biomolecules. J Appl Res Med Aromat Plants 6:80–91

    Google Scholar 

  • Błońska E, Lasota J, Piaszczyk W, Wiecheć M, Klamerus-Iwan A (2018) The effect of landslide on soil organic carbon stock and biochemical properties of soil. J Soils Sediments 18(8):2727–2737

    Article  Google Scholar 

  • Borse N, Chimote VP, Jadhav AS (2011) Stability of micropropagated Musa acuminata cv. Grand Naine over clonal generations: a molecular assessment. Sci Hort 129(3):390–395

    Article  CAS  Google Scholar 

  • Chakrabarty D (2018) Low-cost tissue culture

  • Chandran H, Meena M, Barupal T, Sharma K (2020) Plant tissue culture as a perpetual source for production of industrially important bioactive compounds. Biotechnol Rep 26:e00450

    Article  Google Scholar 

  • Chattopadhyay S, Srivastava A, Bhojwani S, Bisaria V (2001) Development of suspension culture of Podophyllum hexandrum for production of podophyllotoxin. Biotech Lett 23(24):2063–2066

    Article  CAS  Google Scholar 

  • Chen TH, Kartha KK, Leung NL, Kurz WG, Chatson KB, Constabel F (1984) Cryopreservation of alkaloid-producing cell cultures of periwinkle (Catharanthus roseus). Plant Physiol 75(3):726–731

    Article  CAS  Google Scholar 

  • Choi JY, Hong WG, Cho JH, Kim EM, Kim J, Jung CH, Hwang SG, Um HD, Park JK (2015) Podophyllotoxin acetate triggers anticancer effects against non-small cell lung cancer cells by promoting cell death via cell cycle arrest, ER stress and autophagy. Int J Oncol 47(4):1257–1265

    Article  CAS  Google Scholar 

  • Coelho N, Gonçalves S, Romano A (2020) Endemic plant species conservation: biotechnological approaches. Plants 9(3):345

    Article  CAS  Google Scholar 

  • Corlett RT (2016) Plant diversity in a changing world: Status, trends, and conservation needs. Plant Divers 38(1):10–16

    Article  Google Scholar 

  • Corlett RT (2017) A bigger toolbox: biotechnology in biodiversity conservation. Trends Biotechnol 35(1):55–65

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2005) Plants as a source of anti-cancer agents. J Ethnopharmacol 100(1–2):72–79

    Article  CAS  Google Scholar 

  • Ćurčić Milutinović M, Stanković M, Cvetkovic D, Topuzovic M, Mihailovic V, Marković S (2015) Antioxidant and anticancer properties of leaves and seed cones from European yew (Taxus baccata L.). Arch Biol Sci 67:525

    Article  Google Scholar 

  • Cuttelod A, García N, Malak DA, Temple HJ (2019) Katariya V (2009) The Mediterranean: a biodiversity hotspot under threat. Wildlife in a Changing world–an Analysis of the 2008 IUCN Red List of Threatened Species 89:9

    Google Scholar 

  • Danthu P, Touré M, Soloviev P, Sagna P (2004) Vegetative propagation of Ziziphus mauritiana var. Gola by micrografting and its potential for dissemination in the Sahelian Zone. Agrofor Syst 60(3):247–253

    Article  Google Scholar 

  • Das R, Hasan M, Hossain M, Rahman M (2008) Micropropagation of Centella asiatica L. an important medicinal herb. Progress Agric 19(2):51–56

    Article  Google Scholar 

  • Datta S, Chakraborty D, Janakiram T (2017) Low-cost tissue culture: an overview. J Plant Sci Res 33(2):181–199

    Google Scholar 

  • De Miguel MJ, Marín CM, Muñoz PM, Dieste L, Grilló MJ, Blasco JM (2011) Development of a selective culture medium for primary isolation of the main Brucella species. J Clin Microbiol 49(4):1458–1463

    Article  Google Scholar 

  • Devaney JL, Jansen MA, Whelan PM (2014) Spatial patterns of natural regeneration in stands of English yew (Taxus baccata L.); Negative neighbourhood effects. For Ecol Manag 321:52–60

    Article  Google Scholar 

  • Dlamini WM (2016) Analysis of deforestation patterns and drivers in Swaziland using efficient Bayesian multivariate classifiers. Model Earth Syst Environ 2(4):1–14

    Article  Google Scholar 

  • Egertsdotter U, Ahmad I, Clapham D (2019) Automation and scale up of somatic embryogenesis for commercial plant production, with emphasis on conifers. Front Plant Sci 10:109

    Article  Google Scholar 

  • Elhag H, El-Olemy MM, Al-Said MS (2004) Enhancement of somatic embryogenesis and production of developmentally arrested embryos in Nigella sativa L. HortScience 39(2):321–323

    Article  CAS  Google Scholar 

  • El-Hawaz RF, Bridges WC, Adelberg JW (2015) In-vitro growth of Curcuma longa L. in response to five mineral elements and plant density in fed-batch culture systems. PLoS ONE 10(4):e0118912

  • Ellis JP, Camper N (1994) In-vitro culture of Xanthium strumarium (Cocklebur). Plant Cell Tissue Organ Cult 36(3):369–372

  • Espinosa-Leal CA, Puente-Garza CA, García-Lara S (2018) In-vitro plant tissue culture: means for production of biological active compounds. Planta 248(1):1–18

  • Ewald D (2007) Micropropagation of yew (Taxus baccata L.). In: Protocols for micropropagation of woody trees and fruits. Springer, pp 117–123

  • Gillson L, Seymour CL, Slingsby JA, Inouye DW (2020) What are the grand challenges for plant conservation in the 21st century? Front Conserv Sci. https://doi.org/10.3389/fcosc.2020.600943

    Article  Google Scholar 

  • Goel MK, Kukreja AK, Khanuja SPS (2007) Cost-effective approaches for in-vitro mass propagation of Rauwolfia serpentina Benth. Ex Kurz. Asian J Plant Sci 6:957

  • Greenwell M, Rahman P (2015) Medicinal plants: their use in anticancer treatment. Int J Pharm Sci Res 6(10):4103

    CAS  Google Scholar 

  • Grosser JW, Gmitter FG Jr (1990) Protoplast fusion and citrus improvement. Plant Breed Rev 8:339–374

    Google Scholar 

  • Guo B, Stiles AR, Liu CZ (2013) Low-temperature preincubation enhances survival and regeneration of cryopreserved Saussurea involucrata callus. In Vitro Cell Dev Biol-Plant 49(3):320–325

    Article  Google Scholar 

  • Hao Y, He Z (2019) Effects of grazing patterns on grassland biomass and soil environments in China: a meta-analysis. PLoS ONE 14(4):e0215223

    Article  CAS  Google Scholar 

  • Heywood VH (2019) Conserving plants within and beyond protected areas – still problematic and future uncertain. Plant Divers 41(2):36–49

    Article  Google Scholar 

  • Hussain G, Wani M, Mir M, Rather Z, Bhat K (2014) Micrografting for fruit crop improvement. Afr J Biotechnol 13(25):2474

    Article  Google Scholar 

  • Ibrahim MA, Jasim AM, Abbas MF (2012) In-vitro plant regeneration of Indian jujube (Ziziphus mauritiana Lamk.) cv. Zaytoni via indirect organogenesis. Acta Agric Slov 99(1):65–67

  • Inthima P, Sujipuli K (2019) Improvement of growth and bacoside production in Bacopa monnieri through induced autotetraploidy with colchicine. PeerJ 7:e7966

    Article  Google Scholar 

  • Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ali B, Shah SA, Khalil AT (2017) Plant-derived anticancer agents: a green anticancer approach. Asian Pac J Trop Biomed 7(12):1129–1150

    Article  Google Scholar 

  • Iqbal MS, Iqbal Z, Hashem A, Al-Arjani ABF, Abd-Allah EF, Jafri A, Ansari SA, Ansari MI (2021) Nigella sativa callus treated with sodium azide exhibit augmented antioxidant activity and DNA damage inhibition. Sci Rep 11(1):1–14

    Article  Google Scholar 

  • Johnston JW, Benson EE, Harding K (2009) Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant Physiol Biochem 47(2):123–131

    Article  CAS  Google Scholar 

  • Jones BA, McDermott SM (2018) Health impacts of invasive species through an altered natural environment: assessing air pollution sinks as a causal pathway. Environ Resource Econ 71(1):23–43

    Article  Google Scholar 

  • Kadam DD, Chhatre AA, Lavale SA, Shinde NA (2018) Low-cost alternatives for conventional tissue culture media. Int J Curr Microbiol App Sci 7(4):2523–2529p

    Article  Google Scholar 

  • Kar B, Kuanar A, Sahoo S, Acharya L, Nayak S (2015) Journal of Applied BioScience Research. J Appl BioScience Res 12:6–12

    Google Scholar 

  • Kaul S, Das S, Srivastava P (2013) Micropropagation of Ajuga bracteosa, a medicinal herb. Physiol Mol Biol Plants 19(2):289–296

    Article  CAS  Google Scholar 

  • Keller E, Panis B, Engelmann F (2011) In-vitro storage and cryopreservation as substantial complements in concerted actions to better maintain and use crop germplasm. In: VII international symposium on in-vitro culture and horticultural breeding 961

  • Khan A, Shah AH, Ali N (2021) In-vitro propagation and phytochemical profiling of a highly medicinal and endemic plant species of the Himalayan region (Saussurea costus). Sci Rep 11(1):23575

    Article  CAS  Google Scholar 

  • Kor L, Homewood K, Dawson TP, Diazgranados M (2021) Sustainability of wild plant use in the Andean Community of South America. Ambio 50(9):1681–1697

    Article  Google Scholar 

  • Kostrakiewicz-Gierałt K, Pliszko A, Gmyrek-Gołąb K (2020) The effect of visitors on the properties of vegetation of calcareous grasslands in the context of width and distances from tourist trails. Sustainability 12(2):454

    Article  Google Scholar 

  • Krishna G, Reddy PS, Ramteke PW, Rambabu P, Sohrab SS, Rana D, Bhattacharya P (2011) In-vitro regeneration through organogenesis and somatic embryogenesis in pigeon pea [Cajanus cajan (L.) Millsp.] cv. JKR105. Physiol Mol Biol Plants 17(4):375

  • Król SK, Kiełbus M, Rivero-Müller A, Stepulak A (2015) Comprehensive review on betulin as a potent anticancer agent. BioMed Res Int 2015:1

    Article  Google Scholar 

  • Kumar V, Moyo M, Van Staden J (2017) Somatic embryogenesis in Hypoxis hemerocallidea: an important African medicinal plant. S Afr J Bot 108:331–336

    Article  Google Scholar 

  • Kumar RR, Purohit VK, Prasad P, Nautiyal AR (2018) Efficient in-vitro propagation protocol of Swertia chirayita (Roxb. ex Fleming) Karsten: a critically endangered medicinal plant. Natl Acad Sci Lett 41(2):123–127

  • Kumari R, Kumari A, Singh A (2020) Tissue culture study for efficient callus induction from internodal explants of Asparagus racemosus wild an important medicinal herb. Indian J Sci Res 10(2):15–21

    CAS  Google Scholar 

  • Kurtén U, Nuutila AM, Kauppinen V, Rousi M (1990) Somatic embryogenesis in cell cultures of birch (Betula pendula Roth.). Plant Cell Tissue Organ Cult 23(2):101–105

    Article  Google Scholar 

  • Lal N, Ahuja PS (1993) Assessment of liquid culture procedures for in-vitro propagation of Rheum emodi. Plant Cell Tissue Organ Cult 34(2):223–226

  • Lanker U, Malik A, Gupta N, Butola JS (2010) Natural regeneration status of the endangered medicinal plant, Taxus baccata Hook. F. syn. T. wallichiana, in northwest Himalaya. Int J Biodivers Sci Ecosyst Serv Manag 6(1–2):20–27

    Article  Google Scholar 

  • Lavabre JE, García D (2015) Geographic consistency in the seed dispersal patterns of Taxus baccata L. in the Iberian Peninsula. For Syst 24(3):040–040

    Google Scholar 

  • Lehmann C (1997) Clonal diversity of populations of Calamagrostis epigejos in relation to environmental stress and habitat heterogeneity. Ecography 20(5):483–490

    Article  Google Scholar 

  • Lin X, Peng Z, Su C (2015) Potential anti-cancer activities and mechanisms of costunolide and dehydrocostuslactone. Int J Mol Sci 16(5):10888–10906

    Article  CAS  Google Scholar 

  • Linares JC (2013) Shifting limiting factors for population dynamics and conservation status of the endangered English yew (Taxus baccata L., Taxaceae). For Ecol Manag 291:119–127

    Article  Google Scholar 

  • Liu U, Cossu TA, Davies RM, Forest F, Dickie JB, Breman E (2020) Conserving orthodox seeds of globally threatened plants ex situ in the Millennium Seed Bank, Royal Botanic Gardens, Kew, UK: the status of seed collections. Biodivers Conserv 29(9):2901–2949

    Article  Google Scholar 

  • Ludueña RF (1997) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  Google Scholar 

  • Mahata S, Maru S, Shukla S, Pandey A, Mugesh G, Das BC, Bharti AC (2012) Anticancer property of Bryophyllum pinnata (Lam.) Oken. leaf on human cervical cancer cells. BMC Complement Altern Med 12(1):1–11

    Article  Google Scholar 

  • Mani M, Shekhawat MS (2017) Foliar micromorphology of in vitro-cultured shoots and field-grown plants of Passiflora foetida. Hortic Plant J 3(1):34–40

    Article  Google Scholar 

  • Maqsood M, Mujib A, Tonk D, Abdin MZ (2012) Protoplast isolation, culture and plant regeneration in Catharanthus roseus (L.) G. Don via somatic embryogenesis. Curr Biotechnol 1(3):217–226

    Article  CAS  Google Scholar 

  • Martin K (2004) Plant regeneration through somatic embryogenesis in medicinally important Centella asiatica L. In Vitro Cell Dev Biol-Plant 40(6):586–591

    Article  CAS  Google Scholar 

  • Mathur J, Mukunthakumar S (1992) Micropropagation of Bauhinia variegata and Parkinsonia aculeata from nodal explants of mature trees. Plant Cell Tissue Organ Cult 28(1):119–121

    Article  CAS  Google Scholar 

  • Merrouni IA, Elachouri M (2021) Anticancer medicinal plants used by Moroccan people: ethnobotanical, preclinical, phytochemical and clinical evidence. J Ethnopharmacol 266:113435

    Article  Google Scholar 

  • Miri SM (2020) Micropropagation, callus induction and regeneration of ginger (Zingiber officinale Rosc.). Open Agric 5(1):75–84

    Article  Google Scholar 

  • Moraes-Cerdeira RM, Krans JV, McChesney JD, Pereira AM, Franca SC (1995) Cotton fiber as a substitute for agar support in tissue culture. Hort Science 30(5):1082–1083

    Google Scholar 

  • Mousavi S, Miri S, Moradi P (2017) Optimization of micropropagation of jujube (Ziziphus jujuba cv. Tian-yuzao). J Agron Plant Breed 13(4):1–11

    Google Scholar 

  • Mujib A, Ali M, Isah T (2014) Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor)–a comparative study. Saudi J Biol Sci 21(5):442–449

    Article  CAS  Google Scholar 

  • Nadeem M, Palni LMS, Purohit AN, Pandey H, Nandi SK (2000) Propagation and conservation of Podophyllum hexandrum Royle: an important medicinal herb. Biol Cons 92(1):121–129

    Article  Google Scholar 

  • Ndlovu G, Fouche G, Tselanyane M, Cordier W, Steenkamp V (2013) In-vitro determination of the anti-aging potential of four southern African medicinal plants. BMC Complement Altern Med 13(1):1–7

  • Negi V, Maikhuri R, Phondani P, Rawat LS (2010) An inventory of indigenous knowledge and cultivation practices of medicinal plants in Govind Pashu Vihar Wildlife Sanctuary, Central Himalaya, India. Int J Biodivers Sci Ecosyst Serv Manag 6:96–105

    Article  Google Scholar 

  • Nhut D, Hien N, Don N, Khiem D (2007) In-vitro shoot development of Taxus wallichiana Zucc., a valuable medicinal plant. In: Protocols for micropropagation of woody trees and fruits. Springer, pp 107–116

  • Nirmal Babu K, Samsudeen K, Divakaran M, Pillai GS, Sumathi V, Praveen K, Ravindran P, Peter K (2016). Protocols for in-vitro propagation, conservation, synthetic seed production, embryo rescue, microrhizome production, molecular profiling, and genetic transformation in ginger (Zingiber officinale Roscoe.). In: Protocols for in-vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, 2nd ed. Springer, pp 403–426

  • Ooko E, Kadioglu O, Greten HJ, Efferth T (2017) Pharmacogenomic characterization and isobologram analysis of the combination of ascorbic acid and curcumin—two main metabolites of Curcuma longa—in cancer cells. Front Pharmacol 8:38

    Article  Google Scholar 

  • Orłowska R (2021) Barley somatic embryogenesis-an attempt to modify variation induced in tissue culture. J Biol Res-Thessaloniki 28(1):1–12

    Article  Google Scholar 

  • Padmapriya H, Karthikeyan A, Jahir Hussain G, Karthi C, Velayutham P (2011) An efficient protocol for in-vitro propagation of Solanum nigrum L. from nodal explants. J Agric Technol 7(4):1063–1073

  • Pandey V, Ansari WA, Misra P, Atri N (2017) Withania somnifera: advances and implementation of molecular and tissue culture techniques to enhance its application. Front Plant Sci 8:1390

    Article  Google Scholar 

  • Panta A, Panis B, Ynouye C, Swennen R, Roca W (2014) Development of a PVS2 droplet vitrification method for potato cryopreservation. Cryo Lett 35:255–266

    CAS  Google Scholar 

  • Pejchar L, Mooney HA (2009) Invasive species, ecosystem services and human well-being. Trends Ecol Evol 24(9):497–504

    Article  Google Scholar 

  • Phondani PC, Bhatt ID, Negi VS, Kothyari BP, Bhatt A, Maikhuri RK (2016) Promoting medicinal plants cultivation as a tool for biodiversity conservation and livelihood enhancement in Indian Himalaya. J Asia-Pac Biodivers 9(1):39–46

    Article  Google Scholar 

  • Poddar S, Tanaka J, Cate JH, Cho MJ SB (2020) Efficient isolation of protoplasts from rice calli with pause points and its application in transient gene expression and genome editing assays. Plant Methods 16(1):1–11

    Article  Google Scholar 

  • Prakash V, Bisht H, Nautiyal M (2011) Seed germination enhancement in high altitude medicinal plants of Garhwal Himalaya by some pre-sowing treatments. Res J Seed Sci 4(4):199–205

    Article  Google Scholar 

  • Preethi R, Padma P (2016) Biosynthesis and bioactivity of silver nanobioconjugates from grape (Vitis vinifera) seeds and its active component resveratrol. Int J Pharm Sci Res 7(10):4253

    CAS  Google Scholar 

  • Purwaningsih R, Sartohadi J, Setiawan MA (2020) Trees and crops arrangement in the agroforestry system based on slope units to control landslide reactivation on volcanic foot slopes in Java, Indonesia. Land 9(9):327

    Article  Google Scholar 

  • Rafi ZN, Salehi H (2018) Factors affecting in-vitro propagation of some genotypes of Himalayan cedar [Cedrus deodara (Roxb. ex Lamb) G. Don.]. Adv Hortic Sci 32(4):479–486

  • Rafiqpoor D, Kier G, Kreft H (2005) Global centers of vascular plant diversity. Nova Acta Leopoldina NF 92(342):61–83

    Google Scholar 

  • Raja HD, Jenifer AM, Steffi P, Thamilmaraiselvi B, Srinivasan P, Tamilvanan R (2018) Micropropagation of Plumbago zeylanica–an important medicinal plant. World J Pharm Pharm Sci 7(4):1823–1829

    Google Scholar 

  • Rajkumar V, Guha G, Ashok Kumar R (2010) Antioxidant and anti-cancer potentials of Rheum emodi rhizome extracts. Evid-Based Complement Altern Med 2011:28

    Google Scholar 

  • Raza A, Razzaq A, Mehmood SS, Zou X, Zhang X, Lv Y, Xu J (2019) Impact of climate change on crops adaptation and strategies to tackle its outcome: a review. Plants 8(2):34

    Article  CAS  Google Scholar 

  • Reddy KP, Bid HK, Nayak VL, Chaudhary P, Chaturvedi J, Arya K, Konwar R, Narender T (2009) In-vitro and in vivo anticancer activity of 2-deacetoxytaxinine J and synthesis of novel taxoids and their in-vitro anticancer activity. Eur J Med Chem 44(10):3947–3953

  • Reed BM, Sarasan V, Kane M, Bunn E, Pence VC (2011) Biodiversity conservation and conservation biotechnology tools. In Vitro Cell Dev Biol-Plant 47(1):1–4

    Article  CAS  Google Scholar 

  • Ren X, Liu Y, Jeong BR (2019) Enhanced somatic embryo induction of a tree peony, Paeonia ostii ‘Fengdan’, by a combination of 6-benzylaminopurine (BA) and 1-naphthylacetic acid (NAA). Plants 9(1):3

    Article  Google Scholar 

  • Ryynänen L, Aronen T (2005) Vitrification, a complementary cryopreservation method for Betula pendula Roth. Cryobiology 51(2):208–219

    Article  Google Scholar 

  • Saha P, Das S (2010) Highlighting the anti-carcinogenic potential of an ayurvedic medicinal plant, Swertia Chirata. Asian Pac J Cancer Prev 11(6):1445–1449

    Google Scholar 

  • Sahu J, Sahu RK (2013) A review on low-cost methods for in-vitro micropropagation of plant through tissue culture technique. Pharm Biosci J. https://doi.org/10.20510/ukjpb/1/i1/91115

  • Selva E, Stouffs B, Briquet M (1989) In-vitro propagation of Vicia faba L. by micro-cutting and multiple shoot induction. Plant Cell Tissue Organ Cult 18(2):167–179

  • Sharma N, Satsangi R, Pandey R, Singh R, Kaushik N, Tyagi RK (2012) In-vitro conservation of Bacopa monnieri (L.) using mineral oil. Plant Cell Tissue Organ Cult 111(3):291–301

  • Sharma M, Kumari A, Mahant I (2017) Micro propagation and phytochemical profile analysis of tissue culture grown Plantago ovata FORSK. Asian J Pharm Clin Res 10:4–9

    Google Scholar 

  • Sharma N, Thakur M, Sharma P, Sharma YP, Dutt B (2022) In-vitro propagation from rhizomes, molecular evaluation and podophyllotoxin production in Himalayan May Apple (Sinopodophyllum hexandrum Royle TS Ying): an endangered medicinal plant. Plant Cell Tiss Organ Cult 149(1):159–173

  • Shukla MR, Kibler A, Turi CE, Erland LA, Sullivan JA, Murch SJ, Saxena PK (2021) Selection and micropropagation of an elite melatonin rich Tulsi (Ocimum sanctum L.) germplasm line. Agronomy 11(2):207

    Article  CAS  Google Scholar 

  • Silva C, Davey M, Power J (2011) The challenges of Podophyllum tissue culture. Planta Med 77(12):PB16

    Article  Google Scholar 

  • Singh R, Raturi R, Dhodi R, Dhodi R, Uniyal S, Sharma S, Merugu R, Prasad C, Deep A, Kumar R (2021) Wildlife diversity along the altitudinal gradients in the Garhwal Himalaya. Asian J Conserv Biol 10:99–114

    Article  Google Scholar 

  • Singha P, Muthukumarappan K (2016) Quality changes and freezing time prediction during freezing and thawing of ginger. Food Sci Nutr 4(4):521–533

    Article  CAS  Google Scholar 

  • Škrlep K, Bergant M, De Winter G, Bohanec B, Žel J, Verpoorte R, Van Iren F, Camloh M (2008) Cryopreservation of cell suspension cultures of Taxus× media and Taxus floridana. Biol Plant 52(2):329–333

    Article  Google Scholar 

  • Su WW, Lee KT (2007) Plant cell and hairy root cultures–process characteristics, products, and applications. In: Bioprocessing for value-added products from renewable resources, pp 263–292

  • Tabin S, Kamali A, Gupta R (2018) Micropropagation and conservation of Rheum webbianum collected from Zanskar valley through tissue culture. Ann Plant Sci 7(4):2187–2203

    Article  CAS  Google Scholar 

  • Thomas TD (2008) The role of activated charcoal in plant tissue culture. Biotechnol Adv 26(6):618–631

    Article  CAS  Google Scholar 

  • Tyagi RK, Agrawal A, Mahalakshmi C, Hussain Z, Tyagi H (2007) Low-cost media for in-vitro conservation of turmeric (Curcuma longa L.) and genetic stability assessment using RAPD markers. In Vitro Cell Dev Biol Plant 43(1):51–58

  • Van den Bulk R (1991) Application of cell and tissue culture and in-vitro selection for disease resistance breeding—a review. Euphytica 56(3):269–285

  • Vivek M, Modgil M (2018) Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. VirusDisease 29(1):75–82

    Article  Google Scholar 

  • Wang CZ, Zhang Z, Wan JY, Zhang CF, Anderson S, He X, Yu C, He TC, Qi LW, Yuan CS (2015) Protopanaxadiol, an active ginseng metabolite, significantly enhances the effects of fluorouracil on colon cancer. Nutrients 7(2):799–814

    Article  Google Scholar 

  • Wickremesinhe ER, Arteca RN (1994) Taxus cell suspension cultures: optimizing growth and production of taxol. J Plant Physiol 144(2):183–188

    Article  CAS  Google Scholar 

  • Yamuna G, Sumathi V, Geetha S, Praveen K, Swapna N, Nirmal Babu K (2007) Cryopreservation of in-vitro grown shoots of ginger (Zingiber officinale Rosc.). CryoLetters 28(4):241–252

  • Yan CH, Li F, Ma YC (2015) Plumbagin shows anticancer activity in human osteosarcoma (MG-63) cells via the inhibition of S-Phase checkpoints and down-regulation of c-myc. Int J Clin Exp Med 8(8):14432

    CAS  Google Scholar 

  • Yang X, Popova E, Shukla MR, Saxena PK (2019) Root cryopreservation to biobank medicinal plants: a case study for Hypericum perforatum L. In Vitro Cell Dev Biol Plant 55(4):392–402

    Article  CAS  Google Scholar 

  • Yousefian Z, Hosseini B, Rezadoost H, Palazón J, Mirjalili MH (2018) Production of the anticancer compound withaferin a from genetically transformed hairy root cultures of Withania somnifera. Nat Prod Commun 13(8):1934578X1801300806

    CAS  Google Scholar 

  • Zeng SL, Zhang TT, Gao Y, Li B, Fang CM, Flory SL, Zhao B (2012) Road effects on vegetation composition in a saline environment. J Plant Ecol 5(2):206–218

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the laboratory and library staff of High-Altitude Plant Physiology Research Centre (HAPPRC), H.N.B. Garhwal University Uttarakhand, India, and Graphic Era (Deemed to be University) Uttarakhand, India for their support and kind cooperation.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, VLT and PS; writing—original draft preparation, PS, MC, VLT, writing—review and editing, VLT, MCN and PS All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Vijay Laxmi Trivedi or Prabhakar Semwal.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Patricia Marconi.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sati, P., Chauhan, M., Trivedi, V.L. et al. Challenges and prospects for the in-vitro conservation of plants having anticarcinogenic potential in the Western Himalaya, India. Plant Cell Tiss Organ Cult 152, 237–252 (2023). https://doi.org/10.1007/s11240-022-02409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-022-02409-y

Keywords

Navigation