Skip to main content
Log in

Fertile allohexaploid Brassica hybrids obtained from crosses between B. oleracea and B. juncea via ovule rescue and colchicine treatment of cuttings

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An allohexaploid Brassica crop (2n = AABBCC) does not exist naturally, but is of interest for its potential to combine useful traits found in the six cultivated Brassica species which share combinations of the A, B and C genomes with additional allelic heterosis. In this study, we aimed to produce 2n = AABBCC hybrids by crosses between B. juncea and a number of Brassica C genome species. We used ovule rescue to overcome hybridization barriers and different colchicine treatment methods to induce chromosome doubling of ABC hybrids to AABBCC allohexaploids, thus restoring fertility. Only the cross B. oleracea × B. juncea was successful, with six triploid hybrids produced from one genotype combination. Colchicine-containing regeneration media was unsuccessful in doubling chromosome number in these hybrids, but treatment of cuttings with 0.05 to 0.25% colchicine successfully produced ~ 200 S1 allohexaploid seeds. The S1 plants produced 7–84% viable pollen and set 0–390 seeds per plant, with 23–27 bivalents and 0–3 univalents during metaphase I of meiosis. Our results highlight the difficulties in working with the wild C genome species, but showed that our methods have utility for producing euploid, chromosome-doubled progeny in this cross combination. Further, Brassica oleracea × B. juncea allohexaploid hybrids may contain useful genetic factors for improved meiotic stability and fertility in allohexaploid germplasm pools.

Key message

Ovule rescue followed by 0.05–0.25% colchicine treatment of cuttings successfully produces fertile, partially stable allohexaploid Brassica from the cross B. juncea × B. oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

Download references

Acknowledgements

MWM and this project were supported by Australia-India Strategic Research Fund: Biotechnology grant AISRF06520. ASM was supported by Emmy Noether DFG grant MA6473/1-1, and DQM was supported by DFG Sino-German Centre grant MA6473/3-1. Travel and support of MG in Germany were funded by a DFG Initiation of Collaboration Grant (MA6473/10-1) and the INSA-DFG Bilateral Exchange Program-2019.

Author information

Authors and Affiliations

Authors

Contributions

MWM carried out the experiments at UWA and drafted the paper. MG undertook the cytogenetic analysis, and DQM grew the plants at JLU, collected samples and measured their fertility traits. AP assisted with multiplication and colchicine treatment of the hybrid plants at UWA. ASM assisted with writing, presentation and interpretation of the results. MWM, JB and ASM designed the experiments and JB and ASM supervised MWM.

Corresponding author

Correspondence to Annaliese S. Mason.

Additional information

Communicated by Ming-Tsair Chan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mwathi, M.W., Gupta, M., Quezada-Martinez, D. et al. Fertile allohexaploid Brassica hybrids obtained from crosses between B. oleracea and B. juncea via ovule rescue and colchicine treatment of cuttings. Plant Cell Tiss Organ Cult 140, 301–313 (2020). https://doi.org/10.1007/s11240-019-01728-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-019-01728-x

Keywords

Navigation