Skip to main content

Advertisement

Log in

Cyanamide hydratase as selectable marker in potato

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The selectable marker cyanamide hydratase/cyanamide was successfully used to generate transgenic potato plants from the cultivars Russet Burbank, Ranger Russet, Bintje, Desiree, Kardal and Pentland Dell. Up to 3,000 transgenics per person per year were produced. The efficiency of transgenic production varied among cultivars, and was in general 2–3 times lower than the transformation efficiency (TE) using the selectable marker kanamycin. Differences between cultivars in sensitivity to cyanamide selection were observed, but in general a concentration of 30 mg/l was applied for selection of transgenic shoots. A stepwise increase of cyanamide concentration during the transformation procedure for Russet Burbank resulted in an improved TE via a reduction of the escape efficiency from 69 to 29 %. The cultivars differed in the hormone concentration and duration (2,4-D and Zeatin riboside) required for the production of transgenics, predominantly during the phase of shoot initiation. Only for cultivars Bintje and Pentland Dell, adaptations in the hormone scheme are required during the transformation procedure with cyanamide selection compared to selection on kanamycin. Upon application of a transformation protocol for Russet Burbank, only in 1 % of the plants (in a population of 241) Agrobacterium could be detected, but these bacteria did not contain the vector for transgene transfer anymore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

TE:

Transformation efficiency

EE:

Escape efficiency

D:

2,4-Dichlorophenoxy acetic acid

Z:

Zeatin riboside

G:

Gibberilic acid

I:

Indolacetic acid

IBA:

Indolbutyric acid

NAA:

Naphtylacetic acid

BAP:

Benzylaminopurin

GA:

Gibberillic acid

OD600 :

Optical density at 600 nm

GUS:

Beta-glucuronidase

References

  • Amarger N (2002) Genetically modified bacteria in agriculture. Biochimie 84:1061–1072

    Article  CAS  PubMed  Google Scholar 

  • An G, Mitra A, Choi HK, An K, Thornburg RW, Ryan CA (1989) Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1:115–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Barrell PJ, Yongjin Shang, Cooper PA, Conner AJ (2002) Alternative selectable markers for potato transformation using minimal T-DNA vectors. Plant Cell Tissue Organ Cult 70:61–68

    Article  CAS  Google Scholar 

  • Barrell PJ, Meiyalaghan S, Jacobs JM, Conner AJ (2013) Applications of biotechnology and genomics in potato improvement. Plant Biotechnol J 11:907–920

    Article  CAS  PubMed  Google Scholar 

  • Beaujean A, Sangwan RS, Lecardonnel A, Sangwan-Norreel BS (1998) Agrobacterium-mediated transformation of three economically important potato cultivars using sliced internodal explants: an efficient protocol of transformation. J Exp Bot 49:1589–1595

    Article  CAS  Google Scholar 

  • Borna RS, Hoque MI, Sarker RA (2010) Agrobacterium-mediated genetic transformation for local cultivars of potato (Solanum tuberosum L.) using marker genes. Plant Tissue Cult Biotechnol 20:145–155

    Google Scholar 

  • Briza J, Pavingerova D, Prilrylova P, Gazdova J, Vlasak J, Niedermeierova H (2008) Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformaton of tomato and potato. Biol Plant 52:453–461

    Article  CAS  Google Scholar 

  • Chakravarty B, Wang-Pruski G (2010) Rapid regeneration of stable transformants in cultures of potato by improving factors influencing Agrobacterium-mediated transformation. Adv Biosci Biotechnol 1:409–416

    Article  CAS  Google Scholar 

  • Dale PJ, Hampson KK (1995) An assessment of morphogenic and transformation efficiency in a range of varieties of potato (Solanum tuberosum L.). Euphytica 85:101–108

    Article  Google Scholar 

  • Darbani B, Eimanifar A, Stewart CNJr, Camargo WN (2007) Methods to produce marker-free transgenic plants. Biotechnol J 2:83–90

    Article  CAS  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1986) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  Google Scholar 

  • Gelvin SB, Liu C (1994) Genetic manipulation of Agrobacterium tumefaciens strains to improve transformation of recalcitrant plant species. In: Gelvin SB, Schilperoort RA (eds) Plant molelcular biololgy manual. Kluwer, The Netherlands, pp 1–13

    Chapter  Google Scholar 

  • Hare PD, Chua NH (2002) Excision of selectable marker genes from transgenic plants. Nat Biotechnol 20:575–580

    CAS  PubMed  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • Ingham DJ, Beer S, Money S, Hansen G (2001) Quantitative real-time PCR assay for determining transgene copy number in transformed plants. Biotechniques 31(132–134):136–140

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene marker in higher plants. EMBO J 6:3901–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Joersbo M (2001) Advances in the selection of transgenic plants using non-antibiotic marker genes. Physiol Plant 111:269–272

    Article  CAS  PubMed  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunsteds J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Khan RS, Ntui VO, Chin DP, Nakamura I, Mii M (2011) Production of marker-free disease-resistant potato using isopentenyl transferase gene as a positive selection marker. Plant Cell Rep 30:587–597

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Kim HS, Moon JS, Hwang I, Joun H, Jeon JH (2012) Toxoflavin lyase enzyme as a marker for selecting potato plant transformants. Biosci Biotechnol Biochem 76:2354–2356

    Article  CAS  PubMed  Google Scholar 

  • Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: a novel selection marker for plant transformation. Mol Breed 7:2211–2227

    Article  Google Scholar 

  • Landsman J, Graser E, Matzk A (1999) Elimination of Agrobacterium from transgenic plants. In: Ammann K, Jacot Y, Simonsen V, Kjellsson G (eds) Methods for risk assessment of transgenic plants. Springer, New York, pp 63–67

    Chapter  Google Scholar 

  • Landsmann J, Graser E, Riedel-Preu A, van der Hoeven C (1995) Experiments to eliminate agrobacteria persisting in plants. Nachrichtenbl. Deut. Pflanzenschutzd. 47:240–244

    Google Scholar 

  • Maier-Greiner UH, Obermaier-Skrobranek BMM, Estermaier LM, Kammerloher W, Freund C, Wuelfing C, Burkert UI, Matern DH, Beuer M, Eulitz M, Kuefrevioglu ÖI, Hartmann GR (1991) Isolation and properties of a nitrile hydratase from the soil fungus Myrothecium verrucaria that is highly specific for the fertilizer cyanamide and cloning of its gene. Proc Natl Acad Sci USA 88:4260–4264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matzk A, Mantell S, Schiemann J (1996) Localization of persisting agrobacteria in transgenic tobacco plants. Mol Plant Microbe Interact 9:373–381

    Article  CAS  Google Scholar 

  • McDowell JM, An YQ, Huang S, McKinney EC, Meagher RB (1996) The arabidopsis ACT7 actin gene is expressed in rapidly developing tissues and responds to several external stimuli. Plant Physiol 111:699–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J Biotechnol 107:193–232

    Article  CAS  PubMed  Google Scholar 

  • Mitten DH, Horn M, Burrell MM, Blundy KS (1990) Strategies for potato transformation and regeneration. In: Vayda ME, Park WD (eds) The molecular and cellular biology of the potato. CAB International, Wallingford, pp 181–191

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue 4 cultures. Physiol Plant 15:473–479

    Article  CAS  Google Scholar 

  • Newell CA, Rozman R, Hinchee MA, Lawson EC, Haley L, Sanders P, Kaniewski W, Tumer NE (1991) Agrobacterium-mediated transformation of Solanum tuberosum L. cv. ‘Russet Burbank’. Plant Cell Rep 10:30–34

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Mii M (2005) Evaluation of 12 beta-lactam antibiotics for agrobacterium-mediated transformation through in planta antibacterial activities and phytotoxicities. Plant Cell Rep 23:10–11

    Article  Google Scholar 

  • Penna S, Ganapathi TR (2010) Engineering the plant genome, prospects of selection systems using non-antibiotic marker genes. GM Crops 1:128–136

    Article  PubMed  Google Scholar 

  • Perl A, Glili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitised aspartic kinase: two novel selectable markers for plant transformation. Nat Biotechnol 11:715–718

    Article  CAS  Google Scholar 

  • Presting GG, Smith OP, Brown CR (1995) Resistance to potato leaf roll virus in potato plants transformed with the coat protein gene or with vector control constructs. Phytopathology 85:436–442

    Article  CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sawada H, Ieki H, Matsuda I (1995) PCR detection of Ti and Ti plasmids from phytopathogenic Agrobacterium strains. Appl Environ Microbiol 61:828–831

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sijmons PC, Dekker BM, Schrammeijer B, Verwoerd TC, Van den Elzen PJ, Hoekema A (1990) Production of correctly processed human serum albumin in transgenic plants. Biotechnology 8:217–221

    Article  CAS  PubMed  Google Scholar 

  • Stransky H, Amberger A (1973) Isolierung und Eigenschaften einer Cyanamid-hydratase (E.C.-Gruppe 4.2.1.) aus Myrothecium verrucaria. Alb U Schw Z Pflanzenphysiol 70:74–87

    Article  CAS  Google Scholar 

  • Stuiver MH, Sijbolts FH (1999) Patent application WO9931258

  • Van der Hoeven C, Dietz A, Landsmann J (1991) Agrobacteria shown to reside in transgenic plants. Nachrichtenbl Deut Pflanzenschutzd 43:249–251

    Google Scholar 

  • Wallis JG, Dziewanowska K, Guerra DJ (1996) Genetic transformation with the suII gene; a highly efficient selectable marker for Solanum tuberosum L. cv. ‘Russet Burbank’. Mol Breed 2:2283–2290

    Article  Google Scholar 

  • Weeks JT, Koshiyama KY, Maier-Greiner U, Schaeffner T, Anderson OD (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci 40:1749–1754

    Article  CAS  Google Scholar 

  • Wenzler H, Mignery G, May G, Park W (1989) A rapid and efficient transformation method for the production of large numbers of transgenic potato plants. Plant Sci 63:79–85

    Article  CAS  Google Scholar 

  • Xin CH, Guo JB, Huang SW, Qu DY (2011) Optimization of genetic transformation system for potato variety ‘Desiree’ and obtainment of transgenic lines. China Veg 1:15–21

    Google Scholar 

  • Xu H, Khalilian H, Eweida M, Squire S, Abouhaidar MG (1995) Genetically engineered resistance to potato virus X in four commercial potato cultivars. Plant Cell Rep 15:91–96

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Tozawa Y, Hasegawa H, Terakawa T, Ohkawa Y, Wakasa K (2005) Use of a feedback-insensitive α subunit of anthranilate synthase as a selectable marker for transformation of rice and potato. Mol Breed 14:363–373

    Article  Google Scholar 

  • Yang W, Zhou X (1997) Transformation of in vitro grown potato using an Agrobacterium tumefaciens binary vector. Phytomorphology 47:141–149

    Google Scholar 

  • Zhang XH, Zhong WQ, Widholm JM (2005) Expression of a fungal cyanamide hydratase in transgenic soybean detoxifies cyanamide in tissue culture and in planta to provide cyanamide resistance. J Plant Physiol 162:1064–1073

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

D. Ingham for the Taqman analysis, D. Palmer for the field evaluation, S. Tito for the PCR analysis, H. Mudjiwarti and A. Kramer for technical support. Furthermore, it should be mentioned that the work presented was done at Syngenta Mogen, which has been disbanded in the year 2002; this manuscript is an homage to all these people involved and especially our colleague Stephan Ohl, who deceased far too early.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sietske Stuiver-Hoekstra.

Additional information

Stephan Ohl: Deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Driel, H., Keppel, M., van den Berg, E. et al. Cyanamide hydratase as selectable marker in potato. Plant Cell Tiss Organ Cult 118, 125–135 (2014). https://doi.org/10.1007/s11240-014-0468-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0468-6

Keywords

Navigation