Skip to main content
Log in

Transgenic chickpea expressing a recombinant human α1-proteinase inhibitor (α1-PI) driven by a seed-specific promoters from the common bean Phaseolus vulgaris (L.)

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The 5′ regulatory sequences of seed-storage protein genes, arcelin 5-I (Arc), phaseolin (Phas) of common bean (Phaseolus vulgaris L.) and legumin (Leg) gene of Cicer arietinum (L.) were evaluated for seed-specific expression of β-glucuronidase (uidA) and recombinant human α1-proteinase inhibitor (α1-PI) in transgenic chickpea. Histochemical assay of transformed plants developed with seed-specific promoters, showed GUS expression in seeds and not in other plant tissues. Fluorometric assay of β-glucuronidase revealed that phaseolin promoter with arcelin 5′ UTR (pPAG) resulted into maximum GUS activity in seeds, followed by somatic tissues and minimal expression in leaves. The expression profile of GUS driven by different seed-specific promoters in chickpea, are in order phaseolin > arcelin > legumin respectively. RT-PCR analysis confirmed that transcripts of β-glucuronidase and α1-PI genes, driven by the phaseolin promoter are stable in chickpea and their accumulation is confined into the seed tissues. Analysis of α1-PI expression in seeds of transgenic chickpea was performed by direct antigen coating-enzyme linked immunosorbent assay (DAC-ELISA), residual porcine pancreatic elastase activity assay and Western immunoblotting. Results of DAC-ELISA showed that modified α1-PI gene driven by the phaseolin promoter with arcelin 5′ UTR showed maximum accumulation of α1-PI up to 1.95 μg mg−1 of fresh weight in seeds. Biological activity of recombinant α1-PI, confirmed by elastase inhibition assays exhibiting 0.264 μg mg−1 of active protein. Western immunoblot analysis confirmed the molecular mass of plant-expressed recombinant α1-PI of molecular mass ~50 kDa in the seeds of transgenic chickpea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

α1-PI:

α1-Proteinase inhibitor

DAC-ELISA:

Direct antigen coating-enzyme linked immunosorbent assay

PPE:

Porcine pancreatic elastase

TSP:

Total soluble protein

UTR:

Untranslated region

GUS:

β-Glucuronidase

MUG:

4-Methyl umbelliferyl glucuronide

References

  • Agarwal S, Singh R, Sanyal I, Amla DV (2008) Expression of modified gene encoding functional human α-1-antitrypsin protein in transgenic tomato plants. Transgenic Res 17:881–896

    Article  PubMed  CAS  Google Scholar 

  • Archibald AL, McClenaghan M, Hornsey V, Simons JP, Clark AJ (1990) High-level expression of biologically active human α-1-antitrypsin in the milk of transgenic mice. Proc Natl Acad Sci USA 87:5178–5182

    Article  PubMed  CAS  Google Scholar 

  • Blank CA, Brantley M (1994) Clinical features and molecular characteristics of α-1-antitrypsin deficiency. Ann Allergy 72:105–121

    PubMed  CAS  Google Scholar 

  • Boothe J, Nykiforuk C, Shan Y, Zaplachinski S, Szarka S, Kublman P, Murray E, Morck D, Moloney MM (2010) Seed-based expression systems for plant molecular farming. Plant Biotechnol J 8:588–606

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bustos MM, Begum D, Kalkan FA, Battraw MJ, Hall TC (1991) Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. EMBO J 10:1469–1479

    PubMed  CAS  Google Scholar 

  • Chandrasekharan MB, Bishop KJ, Hall TC (2003) Module-specific regulation of the beta-phaseolin promoter during embryogenesis. Plant J 33:853–866

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi CP, Lodhi N, Ansari SA, Tiwari S, Srivastava R, Sawant SV, Tuli R (2007) Mutated TATA-box/TATA binding protein complementation system for regulated transgene expression in tobacco. Plant J 50:917–925

    Article  PubMed  CAS  Google Scholar 

  • Cunha NB, Murad AM, Ramos GL et al (2011) Accumulation of functional recombinant human coagulation factor IX in transgenic soybean seeds. Transgenic Res 20:841–855

    Article  PubMed  CAS  Google Scholar 

  • De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A, Depicker A, Angenon G (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nature Biotechnol 20:1265–1268

    Article  Google Scholar 

  • Eapen S (2008) Advances in development of transgenic pulse crops. Biotechnol Adv 26:162–168

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Dillen W, Clercq DJ, Montagu MV, Angenon G (1999) The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants. Plant Physiol 120:1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Herman EM, Larkins BA (1999) Protein storage bodies and vacuoles. Plant Cell 11:601–614

    PubMed  CAS  Google Scholar 

  • Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, Kavikishor PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May GD, Varshney RK (2011) Large-scale transcriptome analysis in chickpea (Cicer arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. Plant Biotechnol J 9:922–931

    Article  PubMed  CAS  Google Scholar 

  • Hobbs SL, Warkentin TD, DeLong CM (1993) Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Jha S, Agarwal S, Sanyal I, Jain GK, Amla DV (2012) Differential subcellular targeting of recombinant human α1-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants. Plant Sci 196:53–66

    Article  PubMed  CAS  Google Scholar 

  • Lau OS, Sun SSM (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022

    Article  PubMed  CAS  Google Scholar 

  • Li WJ, Dai LL, Chai ZJ, Yin ZJ, Qu LQ (2012) Evaluation of seed storage protein gene 3′-untranslated regions in enhancing gene expression in transgenic rice seed. Transgenic Res 21:545–553

    Article  PubMed  CAS  Google Scholar 

  • Ma JK, Drake PM, Christou P (2003) Genetic modification: the production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    Article  PubMed  CAS  Google Scholar 

  • Mehrotra M, Singh AK, Sanyal I, Altosaar I, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182:87–102

    Article  CAS  Google Scholar 

  • Nadai M, Bally J, Vitel M, Job C, Tissot G, Botterman J, Dubald M (2009) High-level expression of active human alpha1-antitrypsin in transgenic tobacco chloroplasts. Transgenic Res 18:173–178

    Article  PubMed  CAS  Google Scholar 

  • Obembe OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Article  PubMed  Google Scholar 

  • Ohme-Takagi M, Taylor CB, Newman TC, Green PJ (1993) The effect of sequence with high AU content on mRNA stability in tobacco. Proc Natl Acad Sci USA 90:11811–11815

    Article  PubMed  CAS  Google Scholar 

  • Paul M, Ma JK-C (2011) Plant-made pharmaceuticals: leading products and production platforms. Biotechnol Appl Biochem 58:58–67

    Article  PubMed  CAS  Google Scholar 

  • Perlak FJ, Fuch RL, Dean DA, McPherson SA, Fischhoff DA (1991) Modification of the coding sequence enhances plant expression of insect control protein genes. Proc Natl Acad Sci 88:3324–3328

    Article  PubMed  CAS  Google Scholar 

  • Philip R, Darnowski DW, Maughan PJ, Vodkin LO (2001) Processing and localization of bovine β-casein expressed in transgenic soybean seeds under control of a soybean lectin expression cassette. Plant Sci 161:323–335

    Article  PubMed  CAS  Google Scholar 

  • Pires AS, Rosa S, Castanheira S, Fevereiro P, Abranches R (2012) Expression of a recombinant human erythropoietin in suspension cell cultures of Arabidopsis, tobacco and Medicago. Plant Cell Tissue Organ Cult 110:171–181

    Article  CAS  Google Scholar 

  • Plesha MA, Huang T-K, Dandekar AM, Falk BW, McDonald KA (2009) Optimization of the bioprocessing conditions for scale-up of transient production of a heterologous protein in plants using a chemically inducible viral amplicon expression system. Biotechnol Prog 25:722–734

    Article  PubMed  CAS  Google Scholar 

  • Powell R, Hudson LC, Lambirth KC, Luth D, Wang K, Bost KL, Piller KJ (2011) Recombinant expression of homodimeric 660 kDa human thyroglobulin in soybean seeds: an alternative source of human thyroglobulin. Plant Cell Rep 30:1327–1338

    Article  PubMed  CAS  Google Scholar 

  • Ramessar K, Capell T, Christou P (2008) Molecular pharming in cereal crops. Phytochem Rev 7:579–592

    Article  CAS  Google Scholar 

  • Rosales-Mendoza S, Paz-Maldonado LMT, Govea-Alonso DO, Korban SS (2013) Engineering production of antihypertensive peptides in plants. Plant Cell Tissue Organ Cult 112:159–169

    Article  CAS  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanyal I, Singh AK, Kaushik M, Amla DV (2005) Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) with Bacillus thuringiensis cryIAc gene for resistance against pod borer insect Helicoverpa armigera. Plant Sci 168:1135–1146

    Article  CAS  Google Scholar 

  • So Y, Lee K-J, Kim D-S, Lee J-H, Oh D-B, Hwang K-A, Ko K, Choo Y-K, Ko K (2013) Glycomodification and characterization of anti-colorectal cancer immunotherapeutic monoclonal antibodies in transgenic tobacco. Plant Cell Tissue Organ Cult 113:41–49

    Article  CAS  Google Scholar 

  • Stein PE, Carrell RW (1995) What do dysfunctional serpins tell us about molecular mobility and disease? Nat Struct Biol 2:96–113

    Article  PubMed  CAS  Google Scholar 

  • Stoger E, Ma JK-C, Fischer R, Christou P (2005) Sowing the seeds of success: pharmaceutical proteins from plants. Curr Opin Biotechnol 16:167–173

    Article  PubMed  CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15

    Article  PubMed  CAS  Google Scholar 

  • Terashima M, Murai Y, Kawanura M, Nakanishi S, Stoltz T, Chen L, Drohan W, Rodriguez RL, Katoh S (1999) Production of functional human α-1-antitrypsin by plant cell culture. Appl Microbiol Biotechnol 52:516–523

    Article  PubMed  CAS  Google Scholar 

  • Tiwari S, Verma PC, Singh PK, Tuli R (2009) Plants as bioreactors for the production of vaccine antigens. Biotechnol Adv 27:449–467

    Article  PubMed  CAS  Google Scholar 

  • Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tissue Organ Cult. doi:10.1007/s11240-013-0293-3

  • Vitale A, Ceriotti A (2004) Protein quality control mechanism and protein storage in the endoplasmic reticulum. A conflict of interest? Plant Physiol 136:3420–3426

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Dolan MC, Medrano G, Cramer CL, Weathers PJ (2012) Green factory: plants as bioproduction platforms for recombinant proteins. Biotechnol Adv 30:1171–1184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors express their grateful thanks to Dr. C. S. Nautiyal, Director, CSIR-National Botanical Research Institute for providing infrastructural support at CSIR-NBRI, Lucknow. We thank Dr. T. C. Hall, Institute of Developmental and Molecular Biology and Department of Biology, Texas A&M University for providing plasmid −1470 +34 PHAS–GUS-3′ +pUC and Dr. Ann Depicker, Department of Applied Biological Sciences, Laboratory of Plant Genetics, Universiteit Brussels, Belgium, for providing plasmid pbeta-phas-G4 and pParc5I-G4, Dr. S. V. Sawant, Scientist, Plant Molecular Biology Lab, CSIR-NBRI, Lucknow, for providing the gene construct with legumin promoter. We thankfully acknowledge Council of Scientific and Industrial Research, New Delhi for providing research fellowships to SM and SJ and University Grants Commission, New Delhi to RS. We appreciate the generous supply of chickpea seeds by Dr. Dheer Singh, Scientist, GBPUAT, Pantnagar. This work was carried out under the CSIR-NBRI In-house project OLP 0031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devindra Vijay Amla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, S., Jha, S., Singh, R. et al. Transgenic chickpea expressing a recombinant human α1-proteinase inhibitor (α1-PI) driven by a seed-specific promoters from the common bean Phaseolus vulgaris (L.). Plant Cell Tiss Organ Cult 115, 23–33 (2013). https://doi.org/10.1007/s11240-013-0336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0336-9

Keywords

Navigation