Abstract
During the process of subculture of embryogenic cultures, sometimes they may become non-embryogenic, which is not desirable. However, this offers an opportunity to explore the mechanisms underlying cell fate determination and the maintenance of embryogenic potential of explants during the process of somatic embryogenesis. In a previous study, differential expression of microRNAs (miRNAs) has been detected between embryogenic and non-embryogenic cultures as well as during somatic embryo maturation of Larix kaempferi (Lamb.) Carr. However, little is known about the target genes of these miRNAs during these cellular differentiation processes. In this study, full-length cDNA of the MYB homologue from L. kaempferi, LaMYB33, was cloned. Sequence analysis showed that the miR159 target sequence is present in LaMYB33. The isolation of the miRNA-guided cleavage products of LaMYB33 further suggested that this gene is regulated by miRNA. LaMYB33 transcript levels between embryogenic and non-embryogenic cultures and during the late stage of somatic embryo maturation were measured and the results showed opposite patterns in the expression of LaMYB33 and mature miR159. Based on the relationships between the expression patterns of LaMYB33 and mature miR159, we concluded that the post-transcriptional regulation of LaMYB33 by miR159 participates in the maintenance of embryogenic or non-embryogenic potential and somatic embryo maturation, providing new insights into the regulatory mechanisms of somatic embryogenesis.



References
Abrahamsson M, Valladares S, Larsson E, Clapham D, von Arnold S (2012) Patterning during somatic embryogenesis in Scots pine in relation to polar auxin transport and programmed cell death. Plant Cell Tiss Org 109:391–400. doi:10.1007/s11240-011-0103-8
Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365. doi:10.1242/dev.01206
Allen RS, Li J, Stahle MI, Dubroue A, Gubler F, Millar AA (2007) Genetic analysis reveals functional redundancy and the major target genes of the Arabidopsis miR159 family. Proc Natl Acad Sci USA 104:16371–16376. doi:10.1073/pnas.0707653104
Allen RS, Li J, Alonso-Peral MM, White RG, Gubler F, Millar AA (2010) MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence 1:18. doi:10.1186/1758-907X-1-18
Alonso-Peral MM, Li J, Li Y, Allen RS, Schnippenkoetter W, Ohms S, White RG, Millar AA (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154:757–771. doi:10.1104/pp.110.160630
Alonso-Peral MM, Sun C, Millar AA (2012) MicroRNA159 can act as a switch or tuning microRNA independently of its abundance in Arabidopsis. PLoS ONE 7:e34751. doi:10.1371/journal.pone.0034751
Cairney J, Pullman GS (2007) The cellular and molecular biology of conifer embryogenesis. New Phytol 176:511–536. doi:10.1111/j.1469-8137.2007.02239.x
Chen XM (2010) Small RNAs—secrets and surprises of the genome. Plant J 61:941–958. doi:10.1111/j.1365-313X.2009.04089.x
Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org 74:201–228
Guan Y, Ren H, Xie H, Ma Z, Chen F (2009) Identification and characterization of bZIP-type transcription factors involved in carrot (Daucus carota L.) somatic embryogenesis. Plant J 60:207–217. doi:10.1111/j.1365-313X.2009.03948.x
Gubler F, Kalla R, Roberts JK, Jacobsen JV (1995) Gibberellin-regulated expression of a myb gene in barley aleurone cells: evidence for Myb transactivation of a high-pI alpha-amylase gene promoter. Plant Cell 7:1879–1891. doi:10.1105/tpc.7.11.1879
Gutmann M, vonAderkas P, Label P, Lelu MA (1996) Effects of abscisic acid on somatic embryo maturation of hybrid larch. J Exp Bot 47:1905–1917. doi:10.1093/jxb/47.12.1905
Hakman I, Hallberg H, Palovaara J (2009) The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development. Tree Physiol 29:483–496. doi:10.1093/treephys/tpn048
Larsson E, Sitbon F, Ljung K, von Arnold S (2008) Inhibited polar auxin transport results in aberrant embryo development in Norway spruce. New Phytol 177:356–366. doi:10.1111/j.1469-8137.2007.02289.x
Liu X, Gorovsky MA (1993) Mapping the 5′ and 3′ ends of Tetrahymena thermophila mRNAs using RNA ligase mediated amplification of cDNA ends (RLM-RACE). Nucleic Acids Res 21:4954–4960. doi:10.1093/nar/21.21.4954
Lu S, Sun Y, Shi R, Clark C, Li L, Chiang V (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203. doi:10.1105/tpc.105.033456
Lu S, Sun Y-H, Amerson H, Chiang VL (2007) MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development. Plant J 51:1077–1098. doi:10.1111/j.1365-313X.2007.03208.x
Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tiss Org 107:25–33. doi:10.1007/s11240-011-9952-4
Luo YC, Zhou H, Li Y, Chen JY, Yang JH, Chen YQ, Qu LH (2006) Rice embryogenic calli express a unique set of microRNAs, suggesting regulatory roles of microRNAs in plant post-embryogenic development. FEBS Lett 580:5111–5116. doi:10.1016/j.febslet.2006.08.046
Millar AA, Gubler F (2005) The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17:705–721. doi:10.1105/tpc.104.027920
Milojević J, Tubić L, Nolić V, Mitić N, Ćalić-Dragosavac D, Vinterhalter B, Zdravković-Korać S (2012) Hygromycin promotes somatic embryogenesis in spinach. Plant Cell Tiss Org 109:573–579. doi:10.1007/s11240-012-0117-x
Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425:257–263. doi:10.1038/nature01958
Quiroz-Figueroa F, Méndez-Zeel M, Sánchez-Teyer F, Rojas-Herrera R, Loyola-Vargas VM (2002) Differential gene expression in embryogenic and non-embryogenic clusters from cell suspension cultures of Coffea arabica. J Plant Physiol 159:1267–1270. doi:10.1078/0176-1617-00878
Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org 86:285–301. doi:10.1007/s11240-006-9139-6
Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria M, Ram K, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Org 106:179–190. doi:10.1007/s11240-011-9923-9
Ramakrishna A, Giridhar P, Jobin M, Paulose CS, Ravishankar GA (2012) Indoleamines and calcium enhance somatic embryogenesis in Coffea canephora P ex Fr. Plant Cell Tiss Org 108:267–278. doi:10.1007/s11240-011-0039-z
Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606. doi:10.1111/j.1365-313X.2006.02980.x
Rodríguez-Sahagún A, Acevedo-Hernández G, Rodríguez-Domínguez JM, Rodríguez-Garay B, Cervantes-Martínez J, Castellanos-Hernández OA (2011) Effect of light quality and culture medium on somatic embryogenesis of Agave tequilana Weber var. Azul. Plant Cell Tiss Org 104:271–275
Schlögl PS, dos Santos ALW, Vieira LDN, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tiss Org 108:173–180. doi:10.1007/s11240-011-0023-7
Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527. doi:10.1016/j.devcel.2005.01.018
Shiota H, Ko S, Wada S, Otsu CT, Tanaka I, Kamada H (2008) A carrot G-box binding factor-type basic region/leucine zipper factor DcBZ1 is involved in abscisic acid signal transduction in somatic embryogenesis. Plant Physiol Biochem 46:550–558. doi:10.1016/j.plaphy.2008.02.010
Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456. doi:10.1016/S1369-5266(00)00199-0
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876
Tsuji H, Aya K, Ueguchi-Tanaka M, Shimada Y, Nakazono M, Watanabe R, Nishizawa NK, Gomi K, Shimada A, Kitano H, Ashikari M, Matsuoka M (2006) GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers. Plant J 47:427–444. doi:10.1111/j.1365-313X.2006.02795.x
Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, von Arnold S (2011) Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. Planta 234:527–539. doi:10.1007/s00425-011-1418-8
Vestman D, Larsson E, Uddenberg D, Cairney J, Clapham D, Sundberg E, von Arnold S (2011) Important processes during differentiation and early development of somatic embryos of Norway spruce as revealed by changes in global gene expression. Tree Genet Genomes 7:347–362. doi:10.1007/s11295-010-0336-4
Wu XM, Liu MY, Ge XX, Xu Q, Guo WW (2011) Stage and tissue-specific modulation of ten conserved miRNAs and their targets during somatic embryogenesis of Valencia sweet orange. Planta 233:495–505. doi:10.1007/s00425-010-1312-9
Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16. doi:10.1016/j.ydbio.2005.10.036
Zhang L, Qi LW, Han SY (2009) Differentially expressed genes during Larix somatic embryo maturation and the expression profile of partial genes. Hereditas (Beijing) 31:540–545. doi:10.3724/SP.J.1005.2009.00540
Zhang S, Zhou J, Han S, Yang W, Li W, Wei H, Li X, Qi L (2010a) Four abiotic stress-induced miRNA families differentially regulated in the embryogenic and non-embryogenic callus tissues of Larix leptolepis. Biochem Biophys Res Commun 398:355–360. doi:10.1016/j.bbrc.2010.06.056
Zhang SG, Han SY, Yang WH, Wei HL, Zhang M, Qi LW (2010b) Changes in H2O2 content and antioxidant enzyme gene expression during the somatic embryogenesis of Larix leptolepis. Plant Cell Tiss Org 100:21–29. doi:10.1007/s11240-009-9612-0
Zhang J, Zhang S, Han S, Wu T, Li X, Li W, Qi L (2012) Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236:647–657. doi:10.1007/s00425-012-1643-9
Zimmerman JL (1993) Somatic embryogenesis—a model for early development in higher plants. Plant Cell 5:1411–1423. doi:10.1105/tpc.5.10.1411
Acknowledgments
This work was supported by the National Natural Science Foundation of China (30830086), the National Basic Research Program of China (2009CB119106), and the National High Technology Research and Development Program of China (2011AA100203). The authors thank Dr Iain C Bruce (Zhejiang University) and Dr. Yong Guo (Institute of Crop Science, Chinese Academy of Agricultural Sciences) for critical reading of the manuscript, and the anonymous reviewers for their constructive comments on an earlier version of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, WF., Zhang, SG., Han, SY. et al. Regulation of LaMYB33 by miR159 during maintenance of embryogenic potential and somatic embryo maturation in Larix kaempferi (Lamb.) Carr.. Plant Cell Tiss Organ Cult 113, 131–136 (2013). https://doi.org/10.1007/s11240-012-0233-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11240-012-0233-7