Skip to main content
Log in

Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Oilseed rape is considered relatively recalcitrant for genetic modification. This work was performed to establish conditions for effective transformation and regeneration of commercially used cultivars Campino, Haydn, Heros, Hunter and Topas (Brassica napus L.). Cotyledonary petioles and hypocotyls (obtained from the seedlings grown under dark conditions) as a source of explants were used. Our experiments revealed that a lower selection pressure in combination with postponing of selection by 14 days after co-cultivation resulted in recovery of transgenic plants from all cultivars. Transformants were obtained with efficiency from 1 to 5.5%. Histochemically GUS-positive plants were analysed by PCR using primers corresponding to the internal fragments of gus and nptII genes. The transgenic nature was confirmed by Southern blot analyses using a specific nptII probe. This work enriches the list of oilseed rape cultivars available for genetic modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdollahi MR, Corral-Martinez P, Mousavi A, Salmanian AH, Moieni A, Segui-Simarro JM (2009) An efficient method for transformation of pre-androgenic, isolated Brassica napus microspores involving microprojectile bombardment and Agrobacterium-mediated transformation. Acta Physiol Plant 31:1313–1317

    Article  Google Scholar 

  • Abdollahi MR, Moieni A, Mousavi A, Salmanian AH (2011) High frequency production of rapeseed transgenic plants via combination of microprojectile bombardment and secondary embryogenesis of microspore-derived embryos. Mol Biol Rep 38:711–719

    Article  PubMed  CAS  Google Scholar 

  • Bhowmik P, Dirpaul J, Polowick P, Ferrie AMR (2011) A high throughput Brassica napus microspore culture system: influence of percoll gradient separation and bud selection on embryogenesis. Plant Cell Tiss Org. doi:10.1007/s11240-009-9610-2:1-4

  • Boulter ME, Croy E, Simpson P, Shields R, Croy RRD, Shirsat AH (1990) Transformation of Brassica napus L (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes: a comparison. Plant Sci 70:91–99

    Article  CAS  Google Scholar 

  • Cardoza V, Stewart CN (2003) Increased Agrobacterium-mediated transformation and rooting efficiencies in canola (Brassica napus L.) from hypocotyl segment explants. Plant Cell Rep 21:599–604

    PubMed  CAS  Google Scholar 

  • Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium-mediated transformation of thin cell layer explants from Brassica napus L. Theor Appl Gen 75:438–445

    Article  Google Scholar 

  • Chen JL, Beversdorf WD (1994) A combined use of microprojectile bombardment and DNA imbibition enhances transformation frequency of canola (Brassica napus L.). Theor Appl Gen 88:187–192

    Google Scholar 

  • Chen Z, Greenblatt IM, Dellaporta SL (1992) Molecular analysis of Ac transposition and DNA replication. Genetics 130:665–676

    PubMed  CAS  Google Scholar 

  • Colby SM, Juncosa AM, Meredith CP (1991) Cellular differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J Am Soc Hortic Sci 116:356–361

    Google Scholar 

  • Damgaard O, Jensen LH, Rasmussen OS (1997) Agrobacterium tumefaciens-mediated transformation of Brassica napus winter cultivars. Transgenic Res 6:279–288

    Article  CAS  Google Scholar 

  • De Block M, Debrouwer D (1991) 2 T-DNA’s co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Gen 82:257–263

    Article  Google Scholar 

  • De Block M, Debrouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol 91:694–701

    Article  PubMed  Google Scholar 

  • Ferrie AMR, Möllers C (2011) Haploids and doubled haploids in Brassica spp. For genetic and genomic research. Plant Cell Tiss Org 104:375–386

    Article  Google Scholar 

  • Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6:321–325

    Article  CAS  Google Scholar 

  • Ghnaya AB, Charles G, Branchard M (2008) Rapid shoot regeneration from thin cell layer explants excised from petioles and hypocotyls in four cultivars Brassica napus L. Plant Cell Tiss Org 92:25–30

    Article  Google Scholar 

  • Guerche P, Charbonnier M, Jouanin L, Tourneur C, Paszkowski J, Pelletier G (1987) Direct gene transfer by electroporation in Brassica napus. Plant Sci 52:111–116

    Article  CAS  Google Scholar 

  • Hong HP, Gerster JL, Datla RSS, Albani D, Scoles G, Keller W, Robert LS (1997) The promoter of a Brassica napus polygalacturonase gene directs pollen expression of beta-glucuronidase in transgenic Brassica plants. Plant Cell Rep 16:373–378

    CAS  Google Scholar 

  • Huo R, Wang Y, Ma LL, Qiao JQ, Shao M, Gao XW (2010) Assessment of inheritance pattern and agronomic performance of transgenic rapeseed having harpinXooc-encoding hrf2 gene. Transgenic Res 19:841–847

    Article  PubMed  CAS  Google Scholar 

  • Hüsken A, Baumert A, Milkowski C, Becker HC, Strack D, Mollers C (2005a) Resveratrol glucoside (piceid) synthesis in seeds of transgenic oilseed rape (Brassica napus L.). Theor Appl Gen 111:1553–1562

    Article  Google Scholar 

  • Hüsken A, Baumert A, Strack D, Becker HC, Möllers C, Milkowski C (2005b) Reduction of sinapate ester content in transgenic oilseed rape (Brassica napus) by dsRNAi-based suppression of BnSGT1 gene expression. Mol Breeding 16:127–138

    Article  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Kamal GB, Illich KG, Asadollah A (2007) Effects of genotype explant type and nutrient medium components on canola (Brassica napus L.) shoot in vitro organogenesis. Afr J Biotechnol 6:861–867

    CAS  Google Scholar 

  • Khan MR, Rashid H, Ansar M, Chaudry Z (2003) High frequency shoot regeneration and Agrobacterium-mediated DNA transfer in Canola (Brassica napus). Plant Cell Tiss Org 75:223–231

    Article  Google Scholar 

  • Khan I, Ali W, Takar ZA Frooqi A, Sikandar WA (2010) Increased regeneration efficiency of Brassica napus L. cultivars Star, Westar and Cyclone from hypocotyle and cotyledonary explants. Available from Nature Precedings http://hdl.handle.net/10101/npre.2010.4781.1

  • Kong FM, Li J, Tan XL, Zhang LL, Zhang ZY, Qi CK, Ma XK (2009) A new time-saving transformation system for Brassica napus. Afr J Biotechnol 8:2497–2502

    CAS  Google Scholar 

  • Kopertekh L, Broer I, Schiemann J (2009) Developmentally regulated site-specific marker gene excision in transgenic B napus plants. Plant Cell Rep 28:1075–1083

    Article  PubMed  CAS  Google Scholar 

  • Li X, Ahlman A, Yan X, Lindgren H, Zhu LH (2010) Genetic transformation of the oilseed crop Crambe abyssinica. Plant Cell Tiss Org 100:149–156

    Article  CAS  Google Scholar 

  • Liu H, Guo X, Naeem MS, Liu D, Xu L, Zhang W, Tang G, Zhou W (2010) Transgenic Brassica napus L. lines carrying a two gene construct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. Plant Cell Tiss Org. doi 10.1007/s11240-010-9902-6

  • Miki B, Huang B, Bird S, Kemble R, Simmonds D, Keller W (1989) A procedure for the microinjection of plant cells and protoplasts. Methods Cell Sci 12:139–144

    Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242

    Article  CAS  Google Scholar 

  • Murashige I, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nath UK, Wilmer JA, Wallington EJ, Becker HC, Möllers C (2009) Increasing erucic acid content through combination of endogenous low polyunsaturated fatty acids alleles with Ld-LPAAT + Bn-fae1 transgenes in rapeseed (Brassica napus L.). Theor Appl Gen 118:765–773

    Article  CAS  Google Scholar 

  • Ovesná J, Ptáček L, Opatrný Z (1993) Factors influencing the regeneration capacity of oilseed rape and cauliflower in transformation experiments. Biol Plant 35:107–112

    Article  Google Scholar 

  • Pandian A, Hurlstone C, Liu Q, Singh S, Salisbury P, Green A (2006) Agrobacterium- mediated transformation protocol to overcome necrosis in elite Australian Brassica juncea lines. Plant Mol Biol Rep 24:103a–103i

    Article  Google Scholar 

  • Pechan PM (1989) Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep 8:387–390

    Article  Google Scholar 

  • Peng Q, Hu Y, Wei R, Zhang Y, Guan CY, Ruan Y, Liu CL (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29:317–325

    Article  PubMed  CAS  Google Scholar 

  • Pua EC, Mehrapalta A, Nagy F, Chua NH (1987) Transgenic plants of Brassica napus L. Bio-Technol 5:815–817

    Google Scholar 

  • Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Gen 75:685–694

    Article  CAS  Google Scholar 

  • Reiss E, Schubert J, Scholze P, Kramer R, Sonntag K (2009) The barley thaumatin-like protein HV-TLP8 enhances resistance of oilseed rape plants to Plasmodiophora brassicae. Plant Breed 128:210–212

    Article  CAS  Google Scholar 

  • Salaj T, Moravcikova J, Vookova B, Salaj J (2009) Agrobacterium-mediated transformation of embryogenic tissues of hybrid firs (Abies spp.) and regeneration of transgenic emblings. Biotechnol Lett 31:647–652

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Press, Cold Spring Harbor, New York. ISBN 0-87969-309-6

  • Schröder M, Dixelius C, Rahlen L, Glimelius K (1994) Transformation of Brassica napus by using the aadA gene as selectable marker and inheritance studies of the marker genes. Physiol Plantarum 92:37–46

    Article  Google Scholar 

  • Shi Y, Xu G, Warrington TB, Murdoch GK, Kazala EC, Snyder CL, Weselake RJ (2008) Microspore-derived cell suspension cultures of oilseed rape as a system for studying gene expression. Plant Cell Tiss Org 92:131–139

    Article  CAS  Google Scholar 

  • Spangenberg G, Neuhaus G, Schweiger HG (1986) Expression of foreign genes in a higher plant cell after electrofusion-mediated cell reconstruction of a microinjected karyoplast and a cytoplast. Eur J Cell Biol 42:236–238

    CAS  Google Scholar 

  • Tang GX, Zhou WJ, Li HZ, Mao BZ, He ZH, Yoneyama K (2003) Medium, explant and genotype factors influencing shoot regeneration in oilseed Brassica spp. J Agron Crop Sci 189:351–358

    Article  Google Scholar 

  • Wallbraun M, Sonntag K, Eisenhauer C, Krzcal G, Wang YP (2009) Phosphomannose-isomerase (pmi) gene as a selectable marker for Agrobacterium-mediated transformation of rapeseed. Plant Cell Tiss Org 99:345–351

    Article  CAS  Google Scholar 

  • Wang J, Chen Z, Du J, Sun Y, Liang Y (2005) Novel insect resistance in Brassica napus developed by transformation of chitinase and scorpion toxin genes. Plant Cell Rep 24:549–555

    Article  PubMed  CAS  Google Scholar 

  • Wang M, Liu M, Li D, Wu J, Li X, Yang Y (2010) Overexpression of FAD2 promotes seed germination and hypocotyl elongation in Brassica napus. Plant Cell Tiss Org 102:205–211

    Article  CAS  Google Scholar 

  • Weselake RJ, Shah S, Tang MG, Quant PA, Snyder CL, Furukawa-Stoffer TL, Zhu WM, Taylor DC, Zou JT, Kumar A, Hall L, Laroche A, Rakow G, Raney P, Moloney MM, Harwood JL (2008) Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content. J Expl Bot 59:3543–3549

    Article  CAS  Google Scholar 

  • Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: Characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci USA 98:12832–12836

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Singh MB, Swoboda I, Bhalla PL (2005) Agrobacterium-mediated transformation and generation of male sterile lines of australian canola. Aust J Agr Res 56:353–361

    Article  Google Scholar 

  • Zhang Y, Xu J, Han L, Wei W, Guan Z, Cong L, Chai T (2006) Efficient shoot regeneration and Agrobacterium-mediated transformation of Brassica juncea. Plant Mol Biol Rep 24:255a–255i

    Article  Google Scholar 

Download references

Acknowledgments

We thank Drs. Bodil Jørgensen and Beata Dedicova for their advice concerning oilseed rape transformation. This work was funded by the Slovak Grant Agency VEGA project No. 2-0062-11 and by EEA Financial Mechanism SAV-EHP-2008-02-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Moravcikova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boszoradova, E., Libantova, J., Matusikova, I. et al. Agrobacterium-mediated genetic transformation of economically important oilseed rape cultivars. Plant Cell Tiss Organ Cult 107, 317–323 (2011). https://doi.org/10.1007/s11240-011-9982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9982-y

Keywords

Navigation