Skip to main content
Log in

Influence of ectopic expression of Asteraceae MADS box genes on plant ontogeny in tobacco

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Plant MADS box transcription factors play key roles in many developmental processes, including the transition to reproductive phase and determination of floral meristem and organs identity. Here we describe the obtaining and characterization of transgenic Nicotiana tabacum L. plants with constitutive expression of Asteraceae MADS box genes CDM111, CDM41, CDM8, CDM77, CDM44 (Chrysanthemum morifolium L.) and HAM92, HAM75 (Helianthus annuus L.). Phylogenetic analysis confirmed that CDM111, HAM75 and HAM92 belong to APETALA1 (AP1), CDM41 and CDM8—FRUITFULL (FUL), CDM44—SEPALLATA3 (SEP3), and CDM77—ASTERACEAE.SEP3 (AST.SEP3) clades. Overexpression of Chrysanthemum and Helianthus AP1/FUL-like genes in tobacco plants resulted in early flowering, shortened stem and decreased number of leaves, which confirmed the functional similarity of Asteraceae AP1/FUL-like factors to AP1 and FUL. This observation testified the conservatism of processes taking place in different plants including Asteraceae. The yeast GAL4 two- and three-hybrid analysis of interactions between CDM77 and other CDM proteins revealed that CDM77 shares similar interaction map with Gerbera SEP-proteins GRCD1 and GRCD2. Overexpression of CDM44 in tobacco caused early flowering without any alterations in vegetative tissues, while overexpression of CDM77 did not reveal any visible developmental changes, which verified the functional similarity between CDM44 and SEP3, and assumed the unique role of CDM77 as whorl- and flower-type specific C-function partner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Altschul SF, Thomas LM, Alejandro AS, Jinghui Z, Zheng Z, Webb M, David JL (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • An X, Ye M, Wang D, Wang Z, Cao G, Zheng H, Zhang Z (2011) Ectopic expression of a poplar APETALA3-like gene in tobacco causes early flowering and fast growth. Biotechnol Lett 33:1239–1247

    Article  PubMed  CAS  Google Scholar 

  • Angenent GC, Franken J, Busscher M, Weiss D, Van Tunen AJ (1994) Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5:33–44

    Article  PubMed  CAS  Google Scholar 

  • Banerjee A, Chattopadhyay S (2010) Effect of over-expression of Linum usitatissimum PINORESINOL LARICIRESINOL REDUCTASE (LuPLR) gene in transgenic Phyllanthus amarus. Plant Cell Tiss Organ Cult 103:315–323

    Article  CAS  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  PubMed  CAS  Google Scholar 

  • Berbel A, Navarro C, Ferrandiz C, Canas LA, Madueno F, Beltran J-P (2001) Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25:441–451

    Article  PubMed  CAS  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  PubMed  CAS  Google Scholar 

  • Chandler J, Corbesier L, Spielmann P, Dettendorfer J, Stahl D, Apel K, Melzer S (2005) Modulating flowering time and prevention of pod shatter in oilseed rape. Mol Breed 15:87–94

    Article  Google Scholar 

  • Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  PubMed  CAS  Google Scholar 

  • Colombo L, Franken J, Koetje E, Van Went J, Dons HJM (1995) The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7:1859–1868

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  • Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14:1935–1940

    Article  PubMed  CAS  Google Scholar 

  • Duan Y-X, Fan J, Guo W–W (2010) Regeneration and characterization of transgenic kumquat plants containing the Arabidopsis APETALA1 gene. Plant Cell Tiss Organ Cult 100:273–281

    Article  CAS  Google Scholar 

  • Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18:5370–5379

    Article  PubMed  CAS  Google Scholar 

  • Ellul P, Angosto T, García-Sogo B, García-Hurtado N, Martín-Trillo M, Salinas M, Moreno V, Losano R, Martínez-Zapater JM (2004) Expression of Arabidopsis APETALA1 in tomato reduces its vegetative cycle without affecting plant production. Mol Breed 13:155–163

    Article  CAS  Google Scholar 

  • Elo A, Lemmetyinen J, Turunen ML, Tikka L, Sopanen T (2001) Three MADS-box genes similar to APETALA1 and FRUITFULL from silver birch (Betula pendula). Physiol Plant 112:95–103

    Article  PubMed  CAS  Google Scholar 

  • Fambrini M, Cionini G, Bertini D, Michelotti V, Conti A, Pugliesi C (2003) MISSING FLOWERS gene controls axillary meristems initiation in sunflower. Genesis 36:25–33

    Article  PubMed  CAS  Google Scholar 

  • Ferrándiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438

    Article  PubMed  Google Scholar 

  • Ferrario S, Immink RGH, Shchennikova A, Busscher-Lange J, Angenent GC (2003) The MADS Box Gene FBP2 Is Required for SEPALLATA Function in Petunia. Plant Cell 15:914–925

    Article  PubMed  CAS  Google Scholar 

  • Goto K, Kyozuka J, Bowman JL (2001) Turning floral organs into leaves, leaves into floral organs. Curr Opin Genet Dev 11:449–456

    Article  PubMed  CAS  Google Scholar 

  • Gu Q, Ferrándiz C, Yanofsky MF, Martienssen F (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125:1509–1517

    PubMed  CAS  Google Scholar 

  • Guo J-L, Yu C-L, Fan C-Y, Lu Q-N, Yin J-M, Zhang Y-F, Yang Q (2010) Cloning and characterization of a potato TFL1 gene involved in tuberization regulation. Plant Cell Tiss Organ Cult 103:103–109

    Article  CAS  Google Scholar 

  • Honma T, Goto K (2001) Complexes of MADS box proteins are sufficient to convert leaves into floral organs. Nature 409:525–529

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A, Hoffman N (1984) Inheritance of functional foreign genes in plants. Science 223:496–498

    Article  PubMed  CAS  Google Scholar 

  • Immink RGH, Ferrario S, Busscher-Lange J, Kooiker M, Busscher M, Angenent GC (2003) Analysis of the petunia MADS-box transcription factor family. Mol Genet Genomics 268:598–606

    PubMed  CAS  Google Scholar 

  • Immink RGH, Tonako IAN, de Folter S, Shchennikova A, van Dijk ADJ, Busscher-Lange J, Borst JW, Angenent GC (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 10:R24

    Article  PubMed  Google Scholar 

  • Jang S, Hong MY, Chung YY, An G (1999) Ectopic expression of tobacco MADS genes modulates flowering time and plant architecture. Mol Cells 9:576–586

    PubMed  CAS  Google Scholar 

  • Jang S, An K, Lee S, An G (2002) Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 43(2):230–238

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:854–875

    Article  CAS  Google Scholar 

  • Kaufmann R, Wellmer F, Muiño JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueño F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328:85–89

    Article  PubMed  CAS  Google Scholar 

  • Kim M-Y, Kim T-G, Yoo H-S, Yang M-S (2011) Expression and assembly of ApxIIA toxin of Actinobacillus pleuropneumoniae fused with the enterotoxigenic E. coli heat-labile toxin B subunit in transgenic tobacco. Plant Cell Tiss Organ Cult 105:375–382

    Article  CAS  Google Scholar 

  • Kotilainen M, Elomaa P, Uimari A, Albert VA, Yu D, Teeri TH (2000) GRCD1, an AGL2-like MADS box gene, participates in the C function during stamen development in Gerbera hybrida. Plant Cell 12:1893–1902

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Suh S–S, Park E, Cho E, Ahn JH, Kim S-G, Lee JS, Kwon YM, Lee I (2000) The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev 14:2366–2376

    Article  PubMed  CAS  Google Scholar 

  • Lemmetyinen J, Hassinen M, Elo A, Porali I, Keinonen K, Makela H, Sopanen T (2004) Functional characterization of SEPALLATA3 and AGAMOUS orthologues in silver birch. Physiol Plant 121:149–162

    Article  PubMed  CAS  Google Scholar 

  • Li M, Li H, Hu X, Pan X, Wu G (2011) Genetic transformation and overexpression of a rice Hd3a induces early flowering in Saussurea involucrata Kar. et Kir. ex Maxim. Plant Cell Tiss Organ Cult 106:363–371

    Article  CAS  Google Scholar 

  • Liljegren SJ, Roeder AH, Kempin SA, Gremski K, Østergaard L, Guimil S, Reyes DK, Yanofsky MF (2004) Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell 116:843–853

    Article  PubMed  CAS  Google Scholar 

  • Litt A, Irish VH (2003) Duplication and Diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165:821–833

    PubMed  CAS  Google Scholar 

  • Malcomber ST, Kellogg EA (2005) SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10:427–435

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995a) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763–1771

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995b) A gene triggering flower formation in Arabidopsis. Nature 377:522–524

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1998) The Arabidopsis SEP3 MADS box gene is expressed in young flower primordia. Sex Plant Reprod 11:22–28

    Article  CAS  Google Scholar 

  • Mandel MA, Gustafson-Brown C, Savidge B, Yanofsky MF (1992) Molecular characterisation of the Arabidopsis floral homeotic gene apetala-1. Nature 360:273–277

    Article  PubMed  CAS  Google Scholar 

  • Melzer R, Verelst W, Theissen G (2009) The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro. Nucleic Acids Res 37(1):144–157

    Article  PubMed  CAS  Google Scholar 

  • Mizukami Y, Ma H (1995) Separation of AG function in floral meristem determinacy from that in reproductive organ identity by expressing antisense AG RNA. Plant Mol Biol 28:767–784

    Article  PubMed  CAS  Google Scholar 

  • Müller BM, Saedler H, Zachgo S (2001) The MADS-box gene DEFH28 from Antirrhinum is involved in the regulation of floral meristem identity and fruit development. Plant J 28:169–179

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Østergaard L, Kempin SA, Bies D, Klee HJ, Yanofsky MF (2006) Pod shatter-resistant Brassica fruit produced by ectopic expression of the FRUITFULL gene. Plant Biotechnol J 4:45–51

    Article  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS box genes. Nature 405:200–203

    Article  PubMed  CAS  Google Scholar 

  • Pelaz S, Gustafson-Brown C, Kohlami SE, Crosby WL, Yanofsky MF (2001) APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26:385–394

    Article  PubMed  CAS  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6:175–186

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    PubMed  CAS  Google Scholar 

  • Ruokolainen S, Ng YP, Broholm SK, Albert VA, Elomaa P, Teeri TH (2010a) Characterization of SQUAMOSA-like genes in Gerbera hybrida, including one involved in reproductive transition. BMC Plant Biol 10:1–11

    Article  Google Scholar 

  • Ruokolainen S, Ng YP, Albert VA, Elomaa P, Teeri TH (2010b) Large scale interaction analysis predicts that the Gerbera hybrida floral E function is provided both by general and specialized proteins. BMC Plant Biol 10:1–13

    Article  Google Scholar 

  • Shchennikova AV, Shulga OA, Angenent GC, Skryabin KG (2003) Genetic regulation of inflorescence development in Chrysanthemum. Dokl Biol Sci 391:368–370

    Article  PubMed  CAS  Google Scholar 

  • Shchennikova AV, Shulga OA, Immink R, Skryabin KG, Angenent GC (2004) Identification and characterization of four chrysanthemum MADS-box genes, belonging to the APETALA1/FRUITFULL and SEPALLATA3 subfamilies. Plant Physiol 134:1632–1641

    Article  PubMed  CAS  Google Scholar 

  • Shilpa KS, Kumar VD, Sujatha M (2010) Agrobacterium-mediated genetic transformation of safflower (Carthamus tinctorius L.). Plant Cell Tiss Organ Cult 103:387–401

    Article  CAS  Google Scholar 

  • Shin M-R, Seo S-G, Kim J-S, Joen S-B, Kang S-W, Lee G-P, Kwon S-Y, Kim S-H (2011) Alteration of floral organ identity by over-expression of IbMADS3–1 in tobacco. Transgenic Res 20:365–376

    Article  PubMed  CAS  Google Scholar 

  • Shulga OA, Shchennikova AV, Angenent GC, Skryabin KG (2008) MADS-box genes controlling inflorescence morphogenesis in sunflower. Russian J Dev Biol 39:2–5

    Article  CAS  Google Scholar 

  • Shulga OA, Mitiouchkina TYu, Shchennikova AV, Skryabin KG, Dolgov SV (2011) Overexpression of AP1-like genes from Asteraceae induces early-flowering in transgenic Chrysanthemum plants. In Vitro Cell Dev Biol Plant. doi:10.1007/s11627-011-9393-0

  • Sieburth LE, Running MP, Meyerowitz EM (1995) Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell 7:1249–1258

    Article  PubMed  CAS  Google Scholar 

  • Smykal P, Gennen J, De Bodt S, Ranganath V, Melzer S (2007) Flowering of strict photoperiodic Nicotiana varieties in non-inductive conditions by transgenic approaches. Plant Mol Biol 65:233–242

    Article  PubMed  CAS  Google Scholar 

  • Sung SK, Yu GH, An G (1999) Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120:969–978

    Article  PubMed  CAS  Google Scholar 

  • Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box gene families in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  PubMed  CAS  Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Münster T, Winter K-U, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149

    Article  PubMed  CAS  Google Scholar 

  • Uimari A, Kotilainen M, Elomaa P, Yu D, Albert VA, Teeri TH (2004) Integration of reproductive meristem fates by a SEPALLATA-like MADS-box gene. PNAS 101(44):15817–15822

    Article  PubMed  CAS  Google Scholar 

  • Uranbey S, Sevimay CS, Kaya MD, Ipek A, Sancak C, Basalma D, Er C, Ozcan S (2005) Influence of different cocultivation temperatures, periods and media on Agrobacterium tumefaciens-mediated gene transfer. Biol Plant 49:53–57

    Article  Google Scholar 

  • Wandenbussche M, Theissen G, de Peer YV, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  Google Scholar 

  • Yu D, Kotilainen M, Pollanen E, Mehto M, Elomaa P, Helariutta Y, Albert VA, Teeri TH (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). The Plant J 17(1):51–62

    Google Scholar 

  • Zhao Y, Li X, Chen W, Peng X, Cheng X, Zhu S, Cheng B (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell Tiss Organ Cult 105:159–173

    Article  Google Scholar 

  • Zia M, Mirza B, Malik SA, Chaudhary MF (2010) Expression of rol genes in transgenic soybean (Glycine max L.) leads to changes in plant phenotype, leaf morphology, and flowering time. Plant Cell Tiss Organ Cult 103:227–236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the SC No. 02.518.11.7148 and the fundamental investigations program “Molecular and Cell Biology” of Presidium of Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga A. Shulga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goloveshkina, E.N., Shchennikova, A.V., Kamionskaya, A.M. et al. Influence of ectopic expression of Asteraceae MADS box genes on plant ontogeny in tobacco. Plant Cell Tiss Organ Cult 109, 61–71 (2012). https://doi.org/10.1007/s11240-011-0074-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-0074-9

Keywords

Navigation