Skip to main content
Log in

Micropropagation of Pinus massoniana and mycorrhiza formation in vitro

  • Research Note
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

A protocol was developed for the micropropagation of Pinus massoniana and mycorrhiza formation on rooted microshoots. Seedling explants were first cultured on Gresshoff and Doy (GD) medium supplemented with 6-benzyladenine (BA) alone or in combination with α-napthaleneacetic acid (NAA) to stimulate the formation of intercotyledonary axillary buds. The frequency of axillary bud induction was up to 97% on medium supplemented with 4.0 mg l−1 BA and 0. 2 mg l−1 NAA, and the average number of buds per explant reached up to 5.5 on medium with 4.0 mg l−1 BA and 0.1 mg l−1 NAA. Axillary buds elongated rapidly after being transferred to half-strength GD medium containing activated charcoal (0.1% w/v). Shoot proliferation was achieved by cutting elongated shoots into stem segments and subculturing on GD medium containing 2 mg l−1 BA and 0.2 mg l−1 NAA. Root primordia were induced in 82% of shoots when transferred to half-strength GD medium containing 0.2 mg l−1 NAA. Root elongation was achieved in a hormone-free GD agar medium or a perlite substrate. Rooted plantlets were inoculated with the mycelium of ectomycorrhizal fungus Pisolithus tinctorius and the formation of ectomycorrhiza-like structures was achieved in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BA:

6-benzyladenine

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

NAA:

α-naphthaleneacetic acid

GD:

Gresshoff and Doy (1972)

MMN:

Marx and Bryan (1975)

SH:

Schenk and Hildebrandt (1972)

References

  • Alonso P, Moncaleán P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci 63:879–885

    Article  CAS  Google Scholar 

  • Baxter R, Brown SN, England NF, Ludlow CHM, Taylor SL, Womack RW, Dunstan DI (1989) Production of clonal plantlets of tropical pine in tissue culture via axillary shoot activation. Can J For Res 19:1338–1342

    Google Scholar 

  • Bronson MR, Dixon RK (1991) Cultural factors influencing adventitious shoot and plantlet formation from slash pine cotyledons. New For 5:277–288

    Google Scholar 

  • Burns JA, Schwarz OJ, Schlarbaum SE (1991) Multiple shoot production from seedling explants of slash pine (Pinus elliottii, Engelm.). Plant Cell Rep 10:439–443

    Article  CAS  Google Scholar 

  • Cheng XF, Hua XM, Li WD (1995) Micropropagation and mycorrhizae formation of Pinus massoniana Lamb. in vitro. For Res 8:241–246

    Google Scholar 

  • Dolcet-Sanjuan R, Claveria E, Camprubi A, Estaún V, Calvet C (1996) Micropropagation of walnut trees (Juglans regia L.) and response to arbuscular mycorrhizal inoculation. Agronomie 16:639–645

    Article  Google Scholar 

  • Fridborg G, Pedersén M, Landström L, Eriksson T (1978) The effect of activated charcoal on tissue cultures: adsorption of metabolites inhibiting morphogenesis. Physiol Plant 43:104–106

    Article  CAS  Google Scholar 

  • Fukuda T, Fujii Y, Kanamitsu K (1989) Production of resistant pine against the nematode disease through tissue culture techniques. J Japan Wood Res Soc 35:1139–1143

    Google Scholar 

  • Grellier B, Letouze R, Strullu DG (1984) Micropropagation of birch and mycorrhizal formation in vitro. New Phytol 97:591–599

    Article  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum (tomato). Planta 107:161–170

    Article  Google Scholar 

  • Hargreaves CL, Grace LJ, van der Maas SA, Menzies MI, Kumar S, Holden DG, Foggo MN, Low CB, Dibley MJ (2005) Comparative in vitro and early nursery performance of adventitious shoots from cryopreserved cotyledons and axillary shoots from epicotyls of the same zygotic embryo of control-pollinated Pinus radiata. Can J For Res 35:2629–2641

    Article  Google Scholar 

  • Huang JQ, Wei ZM, Xu ZH (1995) Somatic embryogenesis and plantlet regeneration from callus of mature zygotic embryos of masson pine. Acta Bot Sin 37:289–294

    Google Scholar 

  • Jang JC, Tainter FH (1991) Micropropagation of shortleaf, Virginia and loblolly pine × shortleaf pine hybrids via organogenesis. Plant Cell Tiss Org Cult 25:61–67

    Article  Google Scholar 

  • Kalia RK, Arya S, Kalia S, Arya ID (2007) Plantlet regeneration from fascicular buds of seedling shoot apices of Pinus roxburghii Sarg. Biol Plant 51:653–659

    Article  CAS  Google Scholar 

  • Kaul K (1987) Plant regeneration from cotyledon-hypocotyl explants of Pinus strobus L. Plant Cell Rep 6:5–7

    Article  Google Scholar 

  • Lelu-Walter MA, Bernier-Cardou M, Klimaszewska K (2008) Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tiss Org Cult 92:31–45

    Article  Google Scholar 

  • Liguo F, Li N, Mill RR (1999) Pinaceae. In: Wu ZY, Raven PH (eds) (1999) Flora of China, vol 4. Missouri Botanical Garden, St Louis, pp 11–52

    Google Scholar 

  • Lin Y, Wagner MR, Heidmann LJ (1991) In vitro formation of axillary buds by immature shoots of Ponderosa pine. Plant Cell Tiss Org Cult 26:161–166

    Google Scholar 

  • Marks TR, Simpson SE (1994) Factors affecting shoot development in apically dominant Acer cultivars in vitro. J Hort Sci 69:543–551

    Google Scholar 

  • Martins A, Barroso J, Pais MS (1996) Effect of ectomycorrhizal fungi on survival and growth of micropropagated plants and seedlings of Castanea sativa mill. Mycorrhiza 6:265–270

    Article  Google Scholar 

  • Marx DH, Bryan WC (1975) Growth and ectomycorrhizal development of loblolly pine seedlings in fumigated soil infested with the fungal symbiont Pisolithus tinctorius. For Sci 21:242–254

    Google Scholar 

  • Mathur G, Nadgauda R (1999) In vitro plantlet regeneration from mature zygotic embryos of Pinus wallichiana A.B. Jacks. Plant Cell Rep 19:74–80

    Article  CAS  Google Scholar 

  • Mohammed GH, Vidaver WE (1988) Root production and plantlet development in tissue-cultured conifer. Plant Cell Tiss Org Cult 14:137–160

    Article  Google Scholar 

  • Nairn BJ (1993) Commercial micropropagation of radiata pine. In: Ahuja MR (ed) Micropropagation of woody plants. Kluwer Academic Publishers, Dordrecht, pp 383–394

    Google Scholar 

  • Nandwani D, Kumaria S, Tandon P (2001) Micropropagation of Pinus kesiya Royle ex Gord (Khasi pine). Gartenbauwissenschaft 66:68–71

    CAS  Google Scholar 

  • Niemi K, Häggman H (2002) Pisolithus tinctorius promotes germination and forms mycorrhizal structures in Scots pine somatic embryos in vitro. Mycorrhiza 12:263–267

    Article  PubMed  Google Scholar 

  • Normand L, Bärtschi H, Debaud JC, Gay G (1996) Rooting and acclimatization of micropropagated cuttings of Pinus pinaster and Pinus sylvestris are enhanced by the ectomycorrhizal fungus Hebeloma cylindrosporum. Physiol Plant 98:759–766

    Article  CAS  Google Scholar 

  • Oliveira P, Barriga J, Cavaleiro C, Peixe A, Potes AZ (2003) Sustained in vitro root development obtained in Pinus pinea L. inoculated with ectomycorrhizal fungi. Forestry 76:579–587

    Article  Google Scholar 

  • Reddy MS, Satyanarayana T (1998) Inoculation of micropropagated plantlets of Eucalyptus tereticornis with ectomycorrhizal fungi. New For 16:273–279

    Google Scholar 

  • Schenk RU, Hildebrandt AC (1972) Medium and techniques for induction and plant growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50:199–204

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (eds) (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Sommer HF, Brown CL, Kormanik PP (1975) Differentiation of plantlets in longleaf pine (Pinus palustris Mill.) tissue cultured in vitro. Bot Gaz 136:196–200

    Article  Google Scholar 

  • Stojicic D, Budimir S (2004) Cytokinin-mediated axillary shoot formation in Pinus heldreichii. Biol Plant 48:477–479

    Article  CAS  Google Scholar 

  • Stojicic D, Budimir S, Culafic L (1999) Micropropagation of Pinus heldreichii. Plant Cell Tiss Org Cult 59:47–150

    Article  Google Scholar 

  • Strullu DG, Grellier B, Marciniak D, Letouzé R (1986) Micropropagation of chestnut and conditions of mycorrhizal syntheses in vitro. New Phytol 102:95–101

    Article  Google Scholar 

  • Sul I-W, Korban SS (2004) Effects of salt formulations, carbon sources, cytokinins, and auxin on shoot organogenesis from cotyledons of Pinus pinea L. Plant Growth Regul 43:197–205

    Article  CAS  Google Scholar 

  • Supriyanto RohrR (1994) In vitro regeneration of plantlets of Scots pine (Pinus sylvestris) with mycorrhizal roots from subcultured callus initiated from needle adventitious buds. Can J Bot 72:1144–1150

    Article  Google Scholar 

  • Tang W, Newton RJ (2005) Plant regeneration from callus cultures derived from mature zygotic embryos in white pine (Pinus strobus L.). Plant Cell Rep 24:1–9

    Article  CAS  PubMed  Google Scholar 

  • Tang W, Ou-Yang F (1999) Plant regeneration via organogenesis from six families of loblolly pine. Plant Cell Tiss Org Cult 58:223–226

    Article  Google Scholar 

  • Wu RJ (1993) Embryo tissue culture of Pinus massoniana. J Fujian College For 13:98–100

    Google Scholar 

  • Wu XQ, Sun MQ (2006) Mycorrhizal formation between seven ectomycorrhizal fungi and seedlings of three pines species. Acta Ecol Sin 26:4186–4191

    Article  Google Scholar 

  • Yang XM (2004) The collection and application studies on the mycorrhiza fungi of Pinus tree. Dissertation, Nanjing Forestry University

  • Zhang Y, Wei Z-M, Xi M-L, Shi J-S (2006) Direct organogenesis and plantlet regeneration from mature zygotic embryos of masson pine (Pinus massoniana L.). Plant Cell Tiss Org Cult 84:119–123

    Article  CAS  Google Scholar 

  • Zhu LH, Zheng D, Wu XQ (2006) Axillary buds induction and plantlet regeneration of Pinus thunbergii. J Nanjing For Univ 30:27–31

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Qin Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, LH., Wu, XQ., Qu, HY. et al. Micropropagation of Pinus massoniana and mycorrhiza formation in vitro. Plant Cell Tiss Organ Cult 102, 121–128 (2010). https://doi.org/10.1007/s11240-010-9711-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9711-y

Keywords

Navigation