Skip to main content
Log in

Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

We conducted a systematic assessment and comparative study on the biochemical and cellular characteristics of cultured cotton cells during the entire process of somatic embryogenesis (SE). All staged cultures were widely investigated in this assay. Cell and tissue ectogenesis manipulation combined with flow cytometry (FCM) was employed to cellular study during the whole totipotency process of dedifferentiation and redifferentiation. We identified two phases of chromatin decondensation during the dedifferentiation and redifferentiation. At the same time, sharp increase in the ratio of indoleacetic acid (IAA), isopentenyladenosine group (iPAs) at the same stage of cell dedifferentiation and redifferentiation process serve as distinct biochemical maker of dedifferentiation and SE initiation with the unique feature. Our results suggest the two phases of chromatin reorganization associated with endogenous auxin/cytokinin dynamic activity may underlie dedifferentiation and redifferentiation during the entire SE process in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-dichlorophenoxyacetic acid

EC:

Embryogenic calli

FCM:

Flow cytometry

MS:

Murashige and Skoog medium

NEC:

Nonembryogenic calli

PEM:

Proembryogenic masses

SE:

Somatic embryogenesis

IAA:

Indoleacetic acid

iPAs:

Isopentenyladenosine group

References

  • El Maataoui M, Pichot C (1999) Nuclear and cell fusion cause polyploidy in the megagametophyte of common cypress, Cupressus sempervirens L. Planta 208:345–351

    Article  CAS  Google Scholar 

  • Fehér A, Pasternak T, Otvos K, Miskolczi P, Dudits D (2002) Induction of embryogenic competence in somatic plant cells: A review. Biologia 57:5–12

    Google Scholar 

  • Fransz PF, Armstrong S, de Jong JH, et al (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376

    Article  PubMed  CAS  Google Scholar 

  • Ganesan M, Jayabalan N (2004) Evaluation of haemoglobin (erythrogen) for improved somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L. cv. SVPR 2). Plant Cell Rep 23:181–187

    Article  PubMed  CAS  Google Scholar 

  • Grossniklaus U, Spillane C, Page DR, Kohler C (2001) Genomic imprinting and seed development: endosperm formation with and without sex. Curr Opin Plant Biol 4:21–27

    Article  PubMed  CAS  Google Scholar 

  • Hu L, Fu T, Wu J, Qiu D, Yang G (2003) Changes in endogenous hormone content of Brassica napus during growth and development. J Plant Physiol Mol Biol 29:239–244

    CAS  Google Scholar 

  • Mishra R, Wang HY, Yadav NR, Wilkins TA (2003) Development of a highly regenerable elite acala cotton (Gossypium hirsutum cv. Maxxa): a step toward genotype-independent regeneration. Plant Cell Tissue Organ Cult 73:21–35

    Article  CAS  Google Scholar 

  • Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F, Hunziker AT (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and Feulgen densitometry. Ann Bot 92:21–29

    Article  PubMed  Google Scholar 

  • Pinto G, Loureiro J, Lopes T, Santos C (2004) Analysis of the genetic stability of Eucalyptus globulus Labill. somatic embryos by flow cytometry. Theor Appl Genet 109:580–587

    Article  PubMed  CAS  Google Scholar 

  • Smart CC, Fleming AJ, Chaloupkova K, Hanke DE (1995) The physiological role of abscisic acid in eliciting turion morphogenesis. Plant Physiol 108:623–632

    PubMed  CAS  Google Scholar 

  • Sun Y, Zhang X, Nie Y, Guo X, Jin S, Liang S (2004) Production and characterization of somatic hybrids between upland cotton (Gossypium hirsutum) and wild cotton (G. klotzschianum Anderss) via electrofusion. Theor Appl Genet 109:472–479

    Article  PubMed  CAS  Google Scholar 

  • Thomas C, Bronner R, Molinier J, Prinsen E, van Onckelen H, Hahne G (2002) Immuno-cytochemical localization of indole-3-acetic acid during induction of somatic embryogenesis in cultured sunflower embryos. Planta 215:577–583

    Article  PubMed  CAS  Google Scholar 

  • Toonen MAJ, Hendriks T, Schmidt EDL, Verhoeven HA, Van Krammen A, De Vries SC (1994) Description of somatic-embryo forming single cells in carrot suspension cultures employing video cell tracking. Planta 194:565–572

    Article  CAS  Google Scholar 

  • Wilkins TA, Mishra R, Trolinder NL (2004) Agrobacterium-mediated transformation and regeneration of cotton. J Food Environ Agric 2:179–187

    Google Scholar 

  • Wilkins TA, Rajasekaran K, Anderson DM (2000) Cotton biotechnology. Crit Rev Plant Sci 19:511–550

    Article  CAS  Google Scholar 

  • Wu J, Zhang X, Nie Y, Jin S, Liang S (2004) Factors affecting somatic embryogenesis and plant regeneration from a range of recalcitrant genotypes of Chinese cotton (Gossypium hirsutum L.). In Vitro Cell Dev Biol Plant 40:371–375

    Article  CAS  Google Scholar 

  • Yeung EC (1995) Structural and developmental patterns in somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer, Dordrecht, pp 205–248

    Google Scholar 

  • Zeng F, Zhang X, Zhu L, Tu L, Guo X, Nie Y (2006) Isolation and characterization of genes associated to cotton somatic embryogenesis by suppression subtractive hybridization and macroarray. Plant Mol Biol 60:167–183

    Article  PubMed  CAS  Google Scholar 

  • Zhang XL, Sun JZ, Liu JL (1991) Somatic embryogenesis and plant regeneration in upland cotton. Acta Genet Sin 18:461–467

    Google Scholar 

  • Zhang XL, Sun JZ, Liu JL (1992) Comparative study on biochemical and metabolized product of nonembryogenic and embryogenic calli in Coker 201 species of G. hirsutum. Acta Agro Sin 18:176–181

    Google Scholar 

  • Zhao J, Morozova N, Williams L, Libs L, Avivi Y, Grafi G (2001) Two phases of chromatin decondensation during dedifferentiation of plant cells: distinction between competence for cell fate switch and a commitment for S phase. J Biol Chem 276:22772–22778

    Article  PubMed  CAS  Google Scholar 

  • Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yupeng Fan and Dingli Li for excellent technical assistance. This work was supported by a Program for New Century Excellent Talents in University, Ministry of Education of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianlong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, F., Zhang, X., Jin, S. et al. Chromatin reorganization and endogenous auxin/cytokinin dynamic activity during somatic embryogenesis of cultured cotton cell. Plant Cell Tiss Organ Cult 90, 63–70 (2007). https://doi.org/10.1007/s11240-007-9253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9253-0

Keywords

Navigation