Skip to main content
Log in

Catalytic Properties of Compositions Based on Red Mud Nanoparticles in Carbon Monoxide Oxidation Reactions

  • Published:
Theoretical and Experimental Chemistry Aims and scope

According to the results of the study of activated red mud (ARM) and its copper-containing compositions, there is a relationship between the heat treatment conditions of compositions, the size of nanoparticles of the components, and catalytic activity in CO oxidation and steam reforming. It is shown that the introduction of CuO into the composition causes a decrease in the temperature of complete CO conversion in the oxidation reaction by 240-260°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. L. Wang, N. Sun, H. Tang, and W. Sun, Minerals, 9, No. 6, Art. 362 (2019).

  2. I. Astrelin, I. Kosogina, and S. Kyrii, Resource-Saving Technologies of Raw-Material Base Development in Mineral Mining and Processing,M. Toderas, J. Li, and V. Shchokin (eds.), Universitas Publishing, Petrosani, Romania (2020), pp. 371-391.

  3. P. Wang and L. Dong, Materials, 5, No. 10, 1800-1810 (2012).

    Article  CAS  Google Scholar 

  4. J. L. Cao, Z. L. Yan, Q. F. Deng, et al., Catal. Sci. Technol., 4, No. 2, 361-368 (2014).

    Article  CAS  Google Scholar 

  5. S. Sushil and V. S. Batra, J. Hazard. Mater., 203-204, 264-273 (2012).

  6. B. A. Zborovskaya, I. V. Kosogina, T. A. Dontsova, and I. N. Ivanenko, Molodyi Vchenyi, No. 5, 22-25 (2015).

  7. R. V. Busto, M. Goncalves, and L. H. G. Coelho, Water Sci. Technol., 74, No. 6, 1283-1295 (2016).

    Article  CAS  Google Scholar 

  8. N. I. Bento, P. S. C. Santos, T. E. de Souza, et al., J. Hazard. Mater., 314, 304-311 (2016).

    Article  CAS  Google Scholar 

  9. F. F. Dias, A. A. S. Oliveira, A. P. Arcanjo, et al., Appl. Catal. B, 186, 136-142 (2016).

    Article  CAS  Google Scholar 

  10. B. Das and K. Mohanty, Renew. Energy, 143, 1791-1811 (2019).

    Article  CAS  Google Scholar 

  11. L. Huangfu, A. Abubakar, Ch. Li, et al., Roy. Soc. Open Sci., 6, No. 11, Art. 191183 (2019).

  12. E. C. de Resende, I. R. G. Carvalho, M. Schlaf, and M. C. Guerreiro, RSC Adv., 4, No. 88, 47287-47296 (2014).

    Article  Google Scholar 

  13. S. F. Kurtoglu and A. Uzun, Sci. Rep., 6, Art. 32279 (2016).

  14. X. Fang, Q. Liu, P. Li, et al., J. Nanomater., 2016, Art. ID 6947636 (2016).

  15. S. Muhammad, E. Saputra, H. Sun, et al., Ind. Eng. Chem. Res., 51, No. 47, 15351-15359 (2012).

    Article  CAS  Google Scholar 

  16. W. G. Shim, J. W. Nah, H.-Y. Jung, et al., Ind. Eng. Chem. Res., 60, 259-267 (2018).

    Article  CAS  Google Scholar 

  17. H. Chen, G. Wang, Y. Xu, et al., RSC Adv., 6, No. 59, 54202-54214 (2016).

    Article  CAS  Google Scholar 

  18. A. Cruceanu, R. Zavoianu, O. D. Pavel, et al., Int. J. Environ. Sci. Technol., 15, 895-908 (2018).

    Article  CAS  Google Scholar 

  19. Zh.-P. Hu, Y.-P. Zhu, Z.-M. Gao, et al., Chem. Eng. J., 302, 23-32 (2016).

    Article  CAS  Google Scholar 

  20. J. Cao, Y. Wang, G. Li, et al., Curr. Nanosci., 11, No. 4, 413-418 (2015).

    Article  CAS  Google Scholar 

  21. Z.V. Komova, I. P. Zrelova, A. Ya. Veinbender, et al., Katal. Prom., No. 5, 43-50 (2007).

  22. A. Ya. Loboyko, E. A. Mihaylova, N. B. Markova, et al., Vopr. Khim. Khim. Tekhnol., No. 6, 116-128 (2009).

  23. G. C. Chinchen, R. H. Logan, and M. S. Spencer, Appl. Catal., 12, No. 1, 89-96 (1984).

    Article  CAS  Google Scholar 

  24. D. B. Pal, R. Chand, S. N. Upadhyay, and P. K. Mishra, Renew. Sustain. Energy Rev., 93, 549-565 (2018).

    Article  CAS  Google Scholar 

  25. R. Bouarab, S. Bennici, C. Mirodatos, and A. Auroux, J. Catal., 2014, Art. ID 612575 (2014).

  26. A. Boudjemaa, C. Daniel, C. Mirodatos, et al., C. R. Chim., 14, No. 6, 534-538 (2011).

    Article  CAS  Google Scholar 

  27. V. G. Gubina and V. M. Kadoshnikov, Geol.-Min. Visn., No. 2 (14), 122-126 (2005).

  28. Y. Waseda, E. Matsubara, and K. Shinoda, X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems, Springer, Berlin (2011).

  29. O. Z. Didenko, G. R. Kosmambetova, and P. E. Strizhak, J. Mol. Catal. A, 335, Nos. 1-2, 14-23 (2011).

    Article  CAS  Google Scholar 

  30. G. R. Kosmambetova, P. E. Strizhak, K. S. Gavrylenko, and V. I. Grytsenko, Teor. Eksp. Khim., 42, No. 5, 300-305 (2006).

    Google Scholar 

  31. N. S. Kalchuk, O. Z. Didenko, and P. E. Strizhak, Can. J. Chem. Eng., 95, No. 8, 1510-1517 (2017).

    Article  Google Scholar 

  32. A. A. Gokhale, J. A. Dumesic, and M. Mavrikakis, J. Am. Chem. Soc., 130, No. 4, 1402-1414 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vlasenko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 57, No. 1, pp. 61-66, January-February, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kosmambetova, G.R., Yanushevska, O.I., Vlasenko, N.V. et al. Catalytic Properties of Compositions Based on Red Mud Nanoparticles in Carbon Monoxide Oxidation Reactions. Theor Exp Chem 57, 77–83 (2021). https://doi.org/10.1007/s11237-021-09677-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09677-3

Keywords

Navigation