Skip to main content
Log in

Influence of Acid–Base Surface Characteristics of GAxSIBEA Zeolites on their Catalytic Properties in the Process of Oxidative Dehydrogenation of Propane to Propylene with Participation of CO2

  • Published:
Theoretical and Experimental Chemistry Aims and scope

It was found that Lewis acid sites formed by isolated Ga(III) atoms play a decisive role in the process of oxidative dehydrogenation of propane to propylene (with the participation of CO2) in the presence of the GaxSiBEA catalysts. The presence of such sites is confirmed by XRD, 71Ga NMR, FTIR, and NH3-TPD. On the most active catalyst Ga4.0 SiBEA a propylene yield of 40% is achieved. The selectivity of propylene formation is 70-80% on the Ga1,0SiBEA catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

References

  1. J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, and B. M. Weckhuysen, Chem. Rev., 114, 10613-10653 (2014), doi.org/https://doi.org/10.1021/cr5002436.

  2. M. A. Atanga, F. Rezaei, A. Jawad, et al., Appl. Catal. B, 220, 429-445 (2018), doi.org/https://doi.org/10.1016/j.apcatb.2017.08.052.

  3. P. Michorczyk, K. Zenczak-Tomera, B. Michorczyk, et al., J. CO2Util., 36, 54-63 (2020), doi.org/https://doi.org/10.1016/j.jcou.2019.09.018.

  4. K. Chalupka, C. Thomas, Y. Millot, et al., J. Catal., 305, 46-55 (2013), doi.org/https://doi.org/10.1016/j.jcat.2013.04.020.

  5. K. C. Szeto, Z. R. Jones, N. Merle, et al., ACS Catal., 8, 7566-7577 (2018), doi.org/https://doi.org/10.1021/acscatal.8b00936.

  6. B. Xu, T. Li, B. Zheng, et al., Catal. Lett., 119, 283-288 (2007), doi.org/https://doi.org/10.1007/s10562-007-9232-4.

  7. Y. Ren, J. Wang, W. Hua, et al., J. Ind. Eng. Chem., 18, 731-736 (2012), doi.org/https://doi.org/10.1016/j.jiec.2011.11.134.

  8. P. Michorczyk and J. Ogonowski, Appl. Catal. A, 251, 425-433 (2003), doi:https://doi.org/10.1016/S0926-860X(03)00368-5.

    Article  CAS  Google Scholar 

  9. B. Xu, B. Zheng, W. Hua, et al., J. Catal., 239, 470-477 (2006), doi.org/https://doi.org/10.1016/j.jcat.2006.02.017.

  10. A. Rokicicska, M. Drozdek, B. Dudek, et al., Appl. Catal. B, 212, 59-67 (2017), doi.org/https://doi.org/10.1016/j.apcatb.2017.04.067.

  11. N. O. Popovych, O. V. Larina, S. M. Orlyk, et al., Theor. Exp. Chem., 54, 255-264 (2018), doi.org/10.1007/s11237-018-9571-9.

  12. S. Dzwigaj, M. J. Peltre, P. Massiani, et al., Chem. Commun., 87-88 (1998), doi.org/https://doi.org/10.1039/a704556e.

  13. H. Kosslick, G. I. Lischke, G. Walther, et al., Microporous Mater., 9, 13-33 (1997), doi.org/https://doi.org/10.1016/S0927-6513(96)00087-9.

  14. K. J. Chao, S. P. Sheu, L.-H. Lin, et al., Zeolites, 18, 18-24 (1997), doi.org/https://doi.org/10.1016/S0144-2449(96)00107-8.

  15. M. Sasidharan, S. G. Hegde, and R. Kumar, Microporous Mesoporous Mater., 24, 59-67 (1998), doi.org/https://doi.org/10.1016/S1387-1811(98)00152-8.

  16. M. Nakai, K. Miyake, R. Inoue, et al., Catal. Sci. Technol., 9, 6234-6239 (2019), doi.org/https://doi.org/10.1039/c9cy00691e.

  17. C. Shao, W. Lang, X. Yan, and Y. Guo, RSC Adv., 7, 4710-4723 (2017), org/https://doi.org/10.1039/c6ra27204e.

  18. H. Nur, Z. Ramli, J. Efendi, et al., Catal. Commun., 12, 822-825 (2011), doi.org/https://doi.org/10.1016/j.catcom.2011.01.015.

  19. M. L. Martinez, M. B. G. Costa, and O. A. Anunziata, Nanotechnology, 30, 065703 (2018), doi.org/https://doi.org/10.1088/1361-6528/aaf138.

  20. Y. Cheng, T. Lei, C. Miao, et al., Microporous Mesoporous Mater., 268, 235-242 (2018), doi.org/https://doi.org/10.1016/j.micromeso.2018.04.041.

  21. M. Chen, J.-L. Wu, Y.-M. Liu, et al., Appl. Catal. A, 407, 20-28 (2011), doi.org/https://doi.org/10.1016/j.apcata.2011.08.018.

  22. H. Xiao, J. Zhang, P. Wang, et al., Catal. Sci. Technol., 6, 5183-5195 (2016), doi.org/https://doi.org/10.1039/b000000x.

  23. A. Ates, C. Hardacre, and A. Goguet, Appl. Catal. A, 441-442, 30-41 (2012), doi.org/https://doi.org/10.1016/j.apcata.2012.06.038.

  24. L. Y. Margolis and V. N. Korchak, Russ. Chem. Rev., 67, 1073-1082 (1998), doi.org/https://doi.org/10.1070/RC1998v067n12ABEH000428.

  25. I. R. Subbotina, B. N. Shelimov, and V. B. Kazanskii, Kinet. Catal., 43, 412-418 (2002), doi.org/https://doi.org/10.1023/A:1016070221006.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Orlyk.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 56, No. 6, pp. 358-365, November-December, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlyk, S.M., Kantserova, M.R., Chedryk, V.I. et al. Influence of Acid–Base Surface Characteristics of GAxSIBEA Zeolites on their Catalytic Properties in the Process of Oxidative Dehydrogenation of Propane to Propylene with Participation of CO2. Theor Exp Chem 56, 387–395 (2021). https://doi.org/10.1007/s11237-021-09667-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-021-09667-5

Keywords

Navigation