Skip to main content
Log in

Resonant Optical Phenomena in Heterogeneous Plasmon Nanostructures of Noble Metals: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The interaction of electromagnetic radiation with ordered and disordered arrays of noble metal nanoparticles, leading to the excitation of various modes of surface plasmon states in them, is analyzed. The dipole localized surface plasmon resonance in isolated nanoparticles and the influence of various size effects on its optical response are considered. The effect of dipole-dipole interaction between gold and silver nanoparticles on the optical properties of various nanosized and nanostructured objects is discussed. It is shown that both localized and delocalized (propagated) surface plasmon modes can be excited in composite gold and silver nanosystems, in particular, in porous films. The prospects for the practical application of nanostructures with arrays of gold and silver nanoparticles in sensor technology, surface-enhanced Raman spectroscopy, and modern optoelectronics are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.

Similar content being viewed by others

References

  1. V. V. Klimov, Nanoplasmonics [in Russian], Fizmatlit, Moscow (2010).

    Google Scholar 

  2. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludin, Opt. Express, 13, 8373 (2005).

    Google Scholar 

  3. E. Le Ru and P. Etchegoin, Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects, Elsevier, Amsterdam (2009).

    Google Scholar 

  4. L. H. Qian, X. Q. Yan, T. Fujita, et al., Appl. Phys. Lett., 90, 153120 (2007), DOI: https://doi.org/10.1063/1.2722199.

    Article  CAS  Google Scholar 

  5. N. R. Agarwal, F. Neri, S. Trusso, et al., Appl. Surf. Sci., 258, 9148-9152 (2012).

    CAS  Google Scholar 

  6. V. V. Strelchuk, O. F. Kolomys, E. B. Kaganovich, et al., J. Nanometals, 2015, 1-7 (2015), .

    Google Scholar 

  7. H.-J. Qiu, G.-P. Zou, G.-L. Ji, et al., Colloids Surf. B, 69, 105-108 (2009), https://doi.org/10.1016/j.colsurfb.2008.11.007.

    Article  CAS  Google Scholar 

  8. R. Wannapob, P. Thavaungkul, and S. Dawan, Electroanalysis, 29, 472-490 (2017), DOI: https://doi.org/10.1002/elan.201600371.

    Article  CAS  Google Scholar 

  9. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, Nano Lett., 12, 4070 (2012), dx.doi.org/https://doi.org/10.1021/nl301521z.

    Article  CAS  PubMed  Google Scholar 

  10. Y.-J. Lu, J. Kim, H.-Y. Chen, et al., Science, 337, 450-453 (2012), DOI: https://doi.org/10.1126/science/1223504.

    Article  CAS  PubMed  Google Scholar 

  11. J. Biener, A. Wittstock, L. A. Zepeda-Ruiz, et al., Nat. Mater.8, 47-51 (2009), DOI: https://doi.org/10.1038/NMAT2335.

    Article  CAS  PubMed  Google Scholar 

  12. S. Kuwano-Nakatani, Y. H. Han, T. Takahashi, and T. Awano, Advanced Electromagnetics, 2, No. 3, 5-10 (2013).

    Google Scholar 

  13. M. L. Trunov, P. M. Lytvyn, P. M. Naga, et al., Phys. Status Solidi B, 1-9 (2014), DOI: https://doi.org/10.1002/pssb.201350296.

  14. M. Faraday, Philos. Trans., 147 145 (1857).

    Google Scholar 

  15. G. Mie, Ann. Phys., 25, 377 (1908).

    CAS  Google Scholar 

  16. D. Pines, Rev. Mod. Phys., 28, 184 (1956).

    CAS  Google Scholar 

  17. A. Otto, Z. Phys., 216, 398 (1968).

    CAS  Google Scholar 

  18. E. Kretschmann and H. Raether, Naturforschung, 23A, 2135 (1968).

    Google Scholar 

  19. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer, Berlin (1995).

    Google Scholar 

  20. C. F. Bohren and D. R. Hoffman, Absorption and Scattering of Light by Small Particles, Wiley, New York (1983).

    Google Scholar 

  21. L. Novotny and B. Hecht, Principles of Nano-optics, Cambridge University Press, Cambridge (2012).

    Google Scholar 

  22. S. F. Venger, A. V. Goncharenko, and M. L. Dmytruk, Optics of Small Particles and Dispersed Media [in Ukrainian], Naukova Dumka, Kiev (1999).

    Google Scholar 

  23. S. A. Maier, Plasmonics: Fundamentals and Applications, Springer Science+Business Media LLC, UK (2007).

    Google Scholar 

  24. O. A. Eshchenko, Plasmonics [in Ukrainian], Feniks, Kiev (2013).

    Google Scholar 

  25. N. J. Halas, S. Lal, W.-Sh. Chang, et al., Chem. Rev., 111, 3913-3961 (2011).

    CAS  PubMed  Google Scholar 

  26. M. L. Dmytruk and S. Z. Malinich, Ukr. Fiz. Zh., 9, No. 1, 3-37 (2014).

    Google Scholar 

  27. N. G. Klebtsov, Kvantovaya Élektronika, 38, No.6, 504-529 (2008).

    Google Scholar 

  28. J. Langer, S. M. Novikov, and L. M. Liz-Marzan, Nanotechnology, 26, 1-29 (2015), https://doi.org/10.1088/0957-4484/26/32/322001.

    Article  CAS  Google Scholar 

  29. U. Kreibig and P. Zacharias, Z. Physik, 231, 128 (1970).

    CAS  Google Scholar 

  30. J. C. Maxwell-Garnett, Philos. Trans. Roy. Soc. A, 203, 385-420 (1904).

    Google Scholar 

  31. D. A. G. Bruggemann, Ann. Phys., 416, No. 7, 636-679 (1935).

    Google Scholar 

  32. D. J. Bergman, Phys. Rep., 43, 377-407 (1978).

    Google Scholar 

  33. A. Wittstock, V. Zielasek, J. Biener, et al., Science, 327, 319322 (2010), DOI: https://doi.org/10.1126/science.1183591.

    Article  CAS  Google Scholar 

  34. C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, New York (1983).

    Google Scholar 

  35. T. Rangel, D. Kecik, P. E. Trevisanutto, et al., Phys. Rev. B, 86, 125125 (2012).

    Google Scholar 

  36. A. Urban, Optothermal Manipulation of Phospholipid Membranes with Gold Nanoparticles, Dissertation Submitted to the Physics Department of the Ludwig-Maximilians-Universität, Munich (2010).

  37. W. T. Doyle, Phys. Rev., 111, 1067 (1958).

    CAS  Google Scholar 

  38. W. T. Doyle, Phys. Rev. B, 39, 9852 (1989).

    CAS  Google Scholar 

  39. U. Kreibig and L. Genzel, Surface Sci., 156, 678-700 (1985).

    CAS  Google Scholar 

  40. H. Hovel, S. Fritz, A. Hilger, and V. Kreibig, Phys. Rev. B, 48, No. 24, 18179-18188 (1993).

    Google Scholar 

  41. R. H. Doremus and P. Rao, J. Mat. Res., 11, 2834-2840 (1996).

    CAS  Google Scholar 

  42. O. A. Yeshchenko and I. M. Dmytruk, Ukr. J. Phys., 57, No. 2, 266-277 (2012).

    CAS  Google Scholar 

  43. N. D. Lang and W. Kohn, Phys. Rev. B, 1, No. 12, 4555-4568 (1970).

    Google Scholar 

  44. W. Ekardt, Phys. Rev. B, 29, No. 4, 1558-1564 (1984).

    CAS  Google Scholar 

  45. W. Cai, H. Hofmeister, and M. Dubiel, Eur. Phys J. D, 13, 245-253 (2001).

    CAS  Google Scholar 

  46. A. Belahmar and A. Chouiyakh, Adv. Phys. Theor. Appl., 15, 38-47 (2013).

    Google Scholar 

  47. A. Belahmar and A. Chouiyakh, Int. J. Nano Mat. Sci., 3, No. 1, 16-29 (2014).

    CAS  Google Scholar 

  48. Y. Borensztein, P. De Andres, R. Monreal, et al., Phys. Rev. B, 33, 2828 (1986).

    CAS  Google Scholar 

  49. K. P. Charle, W. Schulze, and B. Winter, Z. Phys. D, 12, 471 (1989).

    CAS  Google Scholar 

  50. V. V. Kresin, Phys. Rev. B, 51, 844 (1995).

    Google Scholar 

  51. L. Calmels and J. E. Inglesfield, Phys. Rev. B, 64, 125416 (2001).

    Google Scholar 

  52. A. Liebsch, Phys. Rev. Lett., 71, No. 1, 145-148 (1993).

    CAS  PubMed  Google Scholar 

  53. J. Tiggesbaumker, L. Koller, K.-H. Meiwes-Broer, and A. Liebsch, Phys. Rev. A, 48, No. 3, 1749 (93).

  54. B. Palpant, B. Prével, J. Lermé, et al., Phys. Rev. B, 57, No. 3, 1963-1970 (1998).

    CAS  Google Scholar 

  55. B. Prével, B. Palpant, J. Lermé, et al., Nanostruct. Mater., 12, 307 (1999).

    Google Scholar 

  56. J. Wang, W. M. Lau, and Q. Li, J. Appl. Phys., 97, 114303 (2005).

    Google Scholar 

  57. P. Picozzi, S. Santucci, M. De. Crescenzi, et al., Phys. Rev. B, 31, 4023 (1985).

  58. D. Zanchet, H. Tolentino, M. C. Martins Alves, et al., Chem. Phys. Lett., 323, 167 (2000).

    CAS  Google Scholar 

  59. G. B. Bachelet, F. Bassani, M. Bourg, and A. Julg, J. Phys. C, 16, 4305 (1983).

    CAS  Google Scholar 

  60. S. Grabowski, M. E. Garcia, and K. H. Bennemann, Phys. Rev. Lett., 72, 3969 (1994).

    CAS  PubMed  Google Scholar 

  61. C. Q. Sun, H. L. Bai, S. Li, et al., Acta Mater., 52, 501 (2004).

    CAS  Google Scholar 

  62. L. Yang, H. G. Li, and L. D. Zhang, Appl. Phys. Lett., 76, 1537 (2000).

    CAS  Google Scholar 

  63. F. Bassani, M. Bourg, and F. Cocchini, Nuovo Cim. D, 5, 419-445 (1985).

    Google Scholar 

  64. W. C. Huang and J. T. Lue, Phys. Chem. Solids, 58, No. 10, 1529-1538 (1997).

    CAS  Google Scholar 

  65. J. Lermé, B. Palpant, B. Prével, et al., Eur. Phys. J. D, 4, 95-108 (1998).

    Google Scholar 

  66. Li. Serra and A. Rubio, Phys. Rev. Lett., 78, No. 8, 1428-1431 (1997).

    CAS  Google Scholar 

  67. J. Lermé, Eur. Phys. J. D, 10, 265-277 (2000).

    Google Scholar 

  68. E. Cottancin, G. Celep, J. Lermé, et al., Theor. Chem. Acc., 116, 514-523 (2006), DOI: https://doi.org/10.1007/s00214-006-0089-1.

    Article  CAS  Google Scholar 

  69. E. A. Perassi, L. R. Canali, and E. A. Coronado, J. Phys. Chem. C, 113, No.16, 6315-6319 (2009).

    CAS  Google Scholar 

  70. V. G. Kravets, A. V. Kabashin, W. L. Barnes, and A. N. Grigorenko, Chem. Rev., 118, 5912-5951 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. S. Zou and G. C. Schatz, Chem. Phys. Lett., 403, 62-67 (2005).

    CAS  Google Scholar 

  72. E. M. Hicks, S. Zou, G. C. Schatz, et al., Nano Lett., 5, 1065-1070 (2005).

    CAS  PubMed  Google Scholar 

  73. T. D. Corrigan, S.-H. Guo, H. Szmacinski, and R. J. Phaneuf, Appl. Phys., 88, 101112 (2006).

    Google Scholar 

  74. J. A. Sioss and C. D. Keating, Nano Lett., 5, 1779-1783 (2005).

    CAS  PubMed  Google Scholar 

  75. S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys., 120, 10871-10875 (2004).

    CAS  PubMed  Google Scholar 

  76. S. Zou and G. C. Schatz, J. Chem. Phys., 121, No. 24, 12606-12612 (2004).

    CAS  PubMed  Google Scholar 

  77. J. D. Jackson, Classical Electrodynamics, Wiley, New York (1999).

    Google Scholar 

  78. V. V. Kravets, O. A. Yeshchenko, V. V. Gozhenko, et al., J. Phys. D, 45, 045102 (1-8) (2012).

    Google Scholar 

  79. A. O. Pinchuk and G. C. Schatz, Mater. Sci. Eng. B, 149, 251-258 (2008).

    CAS  Google Scholar 

  80. L. Zhao, K. L. Kelly, and G. C. Schatz, J. Phys. Chem. B, 107, 7343-7350 (2003).

    CAS  Google Scholar 

  81. K.-H. Su, Q. H. Wei, X. Zhang, et al., Nano Letters, 3, No. 8, 1087-1090 (2003).

    CAS  Google Scholar 

  82. T. Atay, J.-H. Song, and A. V. Nurmikko, 4, No. 9, 1627-1631 (2004).

  83. S. Zou, N. Janel, and G. C. Schatz, J. Chem. Phys., 120, No. 23, 10871-10875 (2004).

    CAS  PubMed  Google Scholar 

  84. C. L. Haynes, A. D. McFarland, L. L. Zhao, et al., J. Phys. Chem. B, 107, 7337-7342 (2003).

    CAS  Google Scholar 

  85. M. Meier, A. Wokaun, and P. F. Liao, J. Opt. Soc. Am. B, 2, No. 6, 931-949 (1985).

    CAS  Google Scholar 

  86. B. Lampreecht, G. Schider, R. T. Lechner, et al., Phys. Rev. Lett., 84, No. 20, 4721-4724 (2000).

    Google Scholar 

  87. J. B. Khurgin and G. Sun, Appl. Phys. Lett., 94, 221111(1-3) (2009).

  88. J. B. Khurgin, G. Sun, and R. A. Soref, Appl. Phys. Lett., 93, 021120 (2008).

  89. G. Sun, J. B. Khurgin, and R. A. Soref, J. Opt. Soc. Am. B, 25, 1748 (2008).

    CAS  Google Scholar 

  90. Y. Nishijima, L. Rosa, and S. Juodkazic, Opt. Express, 20, No. 10, 11466-11477 (2012).

    CAS  PubMed  Google Scholar 

  91. M. Quinten, Appl. Phys. B, 73, 245255 (2001).

    Google Scholar 

  92. A. S. Urban, X. Shen, Y. Wang, et al., Nano Lett., 13, 4399-4403 (2013).

    CAS  PubMed  Google Scholar 

  93. M. W. Chu, V. Myroshnychenko, Ch. H. Chen, et al., Nano Lett., 9, 399-404 (2009).

    CAS  PubMed  Google Scholar 

  94. S. J. Barrow, A. M. Funston, D. E. Gomez, et al., Nano Lett., 11, 4180-4187 (2011).

    CAS  PubMed  Google Scholar 

  95. C. Diaz-Egea, R. Abargues, J. P. Martinez-Pastor, et al., Nanoscale Res. Lett., 10, No. 310, 1-6 (2015).

    CAS  Google Scholar 

  96. A. A. Lazarides and G. C. Schatz, J. Chem. Phys. B, 104, 460-467 (2000).

    CAS  Google Scholar 

  97. S. Karpov, Fotonika, 32, No. 2, 40-51 (2012).

    Google Scholar 

  98. A. Sanchez-Gonzalez, S. Corni, and B. Mennucci, J. Phys. Chem. C, 115, 5450-5460 (2011).

    CAS  Google Scholar 

  99. Zh. Zhang, P. Yang, H. Xu, and H. Zheng, J. Appl. Phys., 113, 033102 (2013).

    Google Scholar 

  100. V. Yannopapas, J. Phys., 20, 32521(5) (2008).

    Google Scholar 

  101. F. Forstmann and R. R. Gerhardts, Adv. Solid State Phys., 22, 291 (1982).

    CAS  Google Scholar 

  102. J. Lindhard, K. Dan Vidensk. Selsk. Mat. Fys. Medd., 28, No. 8, 1-58 (1954).

    Google Scholar 

  103. R. Ruppin, Phys. Rev. B, 11, No. 8, 2871-2876 (1975).

    CAS  Google Scholar 

  104. J. Garcia de Abajo, J. Phys. Chem. C, 112, 17983-17987 (2008).

    CAS  Google Scholar 

  105. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, J. Phys., 27, 183-204-183217 (2015).

  106. H. Jung, H. Cha, D. Lee, and S. Yoon, ACS Nano, 9, No. 12, 12292-12300 (2015).

    CAS  PubMed  Google Scholar 

  107. R. Esteban, A. G. Borisov, P. Nordlander, and J. Aizpurua, Nat. Commun., 3, 825-834 (2012).

    PubMed  Google Scholar 

  108. J. Zuloaga, E. Prodan, and P. Nordlander, Nano Lett., 17, 2234-2236 (2014).

    Google Scholar 

  109. W. Zhu, R. Esteban and K. B. Crozier, Nat. Commun., 5, 5228-5236 (2014).

    CAS  PubMed  Google Scholar 

  110. H. Shen, Li. Chen, L. Ferrari, et al., Nano Lett., 17, 2234-2239 (2017).

  111. W. Zhu, R. Esteban, A. G. Borisov, et al., Nat. Commun., 7, 11495 (14) (2016), DOI: https://doi.org/10.1038/ncomms11495.

  112. J. Lambe and S. McCarthy, Phys. Rev. Lett., 37, 923-925 (1976).

    CAS  Google Scholar 

  113. J. Kern, R. Kullock, J. Prangsma, et al., Nat. Photon., 9, 582-586 (2015).

    CAS  Google Scholar 

  114. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, Phys. Rev. Lett., 110, 263901 (2013).

    CAS  PubMed  Google Scholar 

  115. G. Toscano, J. Straubel, A. Kwiatkowski, et al., Nat. Commun., 6, 7132 (2015).

    PubMed  Google Scholar 

  116. P. Ginzburg and A. V. Zayats, ACS Nano, 7, 4334-4342 (2013).

    CAS  PubMed  Google Scholar 

  117. S. Raza, S. I. Bozhevolnyi, M. Wubs, and N. Asger Mortensen, J. Phys. Condens. Matter, 27, 183204 (2015).

    PubMed  Google Scholar 

  118. R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, et al., Faraday Discuss., 178, 151-183 (2015).

    CAS  PubMed  Google Scholar 

  119. U. Hohenester, Phys. Rev. B, 91, 205436 (2015).

    Google Scholar 

  120. K. J. Savage, M. M. Hawkeye, R. Esteban, et al., Nature, 491, 574-577 (2012).

    CAS  PubMed  Google Scholar 

  121. O. Pérez-Gonzaléz, O. N. Zabala, A. G. Borisov, et al., Nano Lett., 10, 3090-3095 (2010).

    PubMed  Google Scholar 

  122. B. A. Snopok, Teor. Éksp. Khim., 48, No. 5, 265-285 (2012). [Theor. Exp. Chem., 48, No. 5, 283-306 (2012) (English translation).]

  123. B. Snopok, in: K. Sattler (editor), 21stCentury Nanoscience-A Handbook of Nanophotonics, Nanoelectronics, and Nanoplasmonics, vol. 6, CRC Press, Boca Raton (2020).

  124. M. I. Stockman, S. V. Faleev, and D. J. Bergma, Phys. Rev. Lett., 87, No. 16, 167401(1-4) (2001).

  125. F. Yu, S. Ahl, A.-M. Caminade, et al., Anal. Chem., 78, 7346-7350 (2006).

    CAS  PubMed  Google Scholar 

  126. J. Shilling, N. Sardana, and F. Heyroth, Propagating Surface Plasmons on Nanoporous Gold. Metamaterials 2012: The 6thInternational Congress on Advanced Electromagnetic Materials in Microwaves and Optics, pp. 101-103.

  127. Zh. Shi, G. Piredda, A. C. Liapis, et al., Opt. Lett., 34, No. 22, 3535-3537 (2009).

    CAS  PubMed  Google Scholar 

  128. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, Phys. Rev. B, 62, No. 24, 16356-16359 (2000).

    Google Scholar 

  129. S. A. Maier, P. G. Kik, and H. A. Atwater, Phys. Rev. B, 67, 205402 (2003).

    Google Scholar 

  130. A. F. Koenderink and A. Polman, Phys. Rev. B, 74, 033402 (2006).

  131. I. B. Udagedara, I. D. Rukhlenko, and M. Premaraine, Opt. Express, 19, 19973 (2011).

    PubMed  Google Scholar 

  132. S. J. Barrow, A. M. Funston, D. E. Gomez, et al., Nano Lett., 11, 4180 (2011).

    CAS  PubMed  Google Scholar 

  133. W. Saj, T. Antosiewicz, J. Pniewski, and T. Szoplik, Opto-Electr. Rev., 14, 243 (2006).

    Google Scholar 

  134. K. B. Crozier, E. Togan, E. Simsek, and T. Yang, Opt. Express, 15, 17482-17493 (2007).

    CAS  PubMed  Google Scholar 

  135. T. Yang and K. B. Crozier, Opt. Express, 16, No. 12, 8570-8580 (2008).

    CAS  PubMed  Google Scholar 

  136. S. I. Lysenko, B. A. Snopok, V. A. Sterligov, et al., Opt. Spectrosc., 90, No. 4, 606-616 (2001).

    CAS  Google Scholar 

  137. S. I. Lysenko, B. A. Snopok, V. A. Sterligov, and Yu. M. Shirshov, Opt. Spectrosc., 91, No. 5, 852-861 (2001).

    Google Scholar 

  138. S. I. Lysenko, B. A. Snopok, and V. A. Sterligov, Opt. Spectrosc., 188, No. 4, 618-628 (2010).

    Google Scholar 

  139. L. Anghinolfi, L. Mattera, M. Canepa, and F. Bisio, Phys. Rev. B, 85, 235426 (2012).

    Google Scholar 

  140. M. O. Stetsenko, L. S. Maksimenko, S. P. Rudenko, et al., Nanoscale Res. Lett., 11, No. 116, 1-7 (2016), DOI: https://doi.org/10.1186/s11671-016-1327-7.

    Article  CAS  Google Scholar 

  141. S. P. Rudenko, M. A. Stetsenko, I. M. Krishchenko, et al., Optika i Spektroskopiya, 120, No. 4, 569-576 (2016).

    Google Scholar 

  142. S. P. Rudenko, M. A. Stetsenko, I. M. Krishchenko, et al., Optoélektronika i Poluprovodnikovaya Tekhnika, 50, 93-97 (2015).

    Google Scholar 

  143. M. Moskovits, J. Chem. Phys., 69, 4159-4161 (1978).

    CAS  Google Scholar 

  144. S.-Y. Ding, E.-M. You, Zh.-Q. Tian, and M. Moskovits, Chem. Soc. Rev., 46, 4042-4076 (2017).

    CAS  PubMed  Google Scholar 

  145. S. Nie and S. R. Emory, Science, 275, 1102-1106 (1997).

    CAS  PubMed  Google Scholar 

  146. K. Kneipp, Y. Wang, H. Kneipp, et al., Phys. Rev. Lett., 78, 1667-1670 (1997).

    CAS  Google Scholar 

  147. M. Fan, G. F. Andrade, and A. G. Brolo, Anal. Chim. Acta, 693, 7 (2011).

    CAS  PubMed  Google Scholar 

  148. M. Naya, T. Tani, Y. Tomaru, et al., Proc. SPIE, 7032, 70321Q/1 (2008).

    CAS  Google Scholar 

  149. J. Fang, S. Liu, and Z. Li, Biomaterials, 32, No. 21, 4877 (2011).

    CAS  PubMed  Google Scholar 

  150. J. B. Jackson and N. J. Halas, Proc. Natl. Acad. U.S.A., 101, 17930 (2004).

    CAS  Google Scholar 

  151. K. L. Wustholz, A.-I. Henry, J. M. McMahon, et al., J. Am. Chem. Soc., 132, 10903 (2010).

    CAS  PubMed  Google Scholar 

  152. K. Tanabe, J. Phys. Chem. C., 112, No. 40, 15721-15728 (2008).

    CAS  Google Scholar 

  153. J. Jiang, K. Bosnick, M. Maillard, and L. Brus, J. Phys. Chem. B, 107, 9964 (2003).

    CAS  Google Scholar 

  154. D. Radzuik and H. Moehwald, Phys. Chem. Chem. Phys., 17, 21072-21093 (2015).

    Google Scholar 

  155. D. Fornasiero and F. Grieser, J. Chem. Phys., 87, No. 5, 3213-3217 (1987).

    CAS  Google Scholar 

  156. K. C. Lee, S. T. Pal, Y. C. Chang, et al., Mat. Sci. Eng. B, 52, 189-194 (1998).

    Google Scholar 

  157. V. V. Strelchuk, O. F. Kolomys, E. B. Kaganovich, et al., J. Nanomater., 2015, 1-7 (2015).

    Google Scholar 

  158. V. V. Strelchuk, O. F. Kolomys, E. B. Kaganovich, et al., Semicond. Phys. Quantum Electron. Optoelectron., 18, No. 1, 46-52 (2015).

    CAS  Google Scholar 

  159. E. B. Kaganovich, I. M. Krishchenko, S. A. Kravchenko, et al., Optika i Spektroskopiya, 118, No. 2, 311-316 (2015).

    Google Scholar 

  160. Yi Ding and J. Erlebacher, J. Am. Chem. Soc., 125, No. 26, 7772-7773 (2003).

  161. Yi Ding, Y.-K. Kim, and J. Erlebacher, Adv. Mater., 16, No.21, 1897-1900 (2004).

  162. F. Yu, S. Ahl, A.-M. Caminade, et al., Anal. Chem., 78, 7346-7350 (2006).

    CAS  PubMed  Google Scholar 

  163. L. H. Qian, X. Q. Yan, T. Fujita, et al., Appl. Phys. Lett., 90, 153120 (1-3) (2007).

  164. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Chem. Phys. Lett., 26, No.2, 163-166 (1974).

  165. W. L. Barnes, J. Mod. Opt., 45, No. 4, 661-699 (1998).

    CAS  Google Scholar 

  166. K. Aslan and C. D. Geddes, Chem. Soc. Rev., 38, No. 9, 2556-2564 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  167. M. Osawa, Near-Field Opt. Surf. Plasmon Polaritons, 81, 163-187 (2001).

    CAS  Google Scholar 

  168. S. Lal, N. K. Grady, J. Kundu, et al., Chem. Soc. Rev., 37, No. 5, 898-911 (2008).

    CAS  PubMed  Google Scholar 

  169. G. A. Baker and D. S. Moore, Anal. Bioanal. Chem., 382, No. 8, 1751-1770 (2005).

    CAS  PubMed  Google Scholar 

  170. E. Ozbay, Science, 311, No. 5758, 189-193 (2006).

    CAS  PubMed  Google Scholar 

  171. W. Srituravanich, N. Fang, Ch. Sun, et al., J. Vac. Sci. Technol. B, 22, No. 6, 3475-3478 (2004).

    CAS  Google Scholar 

  172. Z. W. Liu, J. M. Steele, W. Srituravanich, et al., Nano Lett., 5, No. 9, 1726-1729 (2005).

    CAS  PubMed  Google Scholar 

  173. D. B. Shao and S. C. Chen, Appl. Phys. Lett., 86, No. 25, 253107 (2005).

    Google Scholar 

  174. S. A. Maier, P. G. Kik, H. A. Atwater, et al., Nat. Mater., 2, No. 4, 229-232 (2003).

    CAS  PubMed  Google Scholar 

  175. A. N. Grigorenko, N. W. Roberts, M. R. Dickinson, and Y. Zhang, Nat. Photon., 2, No. 4, 229-232 (2003).

    Google Scholar 

  176. E. Cubukcu, N. F. Yu, E. J. Smythe, et al., IEEE J. Sel. Top. Quantum Electron., 14, No. 6, 1448-1461 (2008).

    CAS  Google Scholar 

  177. R. F. Oulton, V. J. Sorger, T. Zentgraf, et al., Nature, 461, No. 7264, 629-632 (2009).

    CAS  PubMed  Google Scholar 

  178. A. V. Whitney, J. W. Elam, Sh. Zou, et al., J. Phys. Chem. B, 109, 20522 (8) (2005).

  179. A. J. Haes, S. Zou, J. Zhao, et al., J. Am. Chem. Soc., 128, No. 33, 10905-10914 (2006).

    CAS  PubMed  Google Scholar 

  180. L. E. Kreno, J. T. Hupp, and R. P. Van Duyne, Anal. Chem., 82, 8042 (6) (2010).

  181. S. Chen, M. Svedendahl, M. Käll, et al., Nanotechnology, 20, 434015 (24) (2009).

    Google Scholar 

  182. C. Sonnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, Nat. Biotechnol., 23, 741 (5) (2005).

  183. W. P. Hall, J. N. Anker, Y. Lin, et al., J. Am. Chem. Soc., 130, 5836-5837 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  184. J. N. Ander, W. P. Hall, O. Lyandres, et al., Natl. Mater.,7, 442-453 (2008).

    Google Scholar 

  185. J. Zhao, X. Zhan, C. R. Yonzon, et al., Nanomedicine, 1219-1228 (2006).

    Google Scholar 

  186. J. Homola (editor), Surface Plasmon Resonance (Springer Series on Chemical Sensors and Biosensors, Vol. 4), Springer, Berlin (2006).

  187. V. M. Agranovich and D. D. Mills, Surface Polaritons. Electromagnetic Waves on Surfaces and Phase Boundaries [in Russian], Nauka, Moscow (1985).

  188. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, Springer, Berlin (2007).

    Google Scholar 

  189. B. A. Snopok, Teor. Éksp. Khim., 50, No. 2, 69-93 (2014). [Theor. Exp. Chem., 50, No. 2, 67-95 (2014) (English translation).]

  190. W. Knoll, in: R. E. Hummel and K. H. Guenther (eds.), Handbook of Optical Properties, Vol. 1, Ch. 13, CRC Press, Boca Raton (1997).

  191. P. Boltovets, S. Shinkaruk, L. Vellutini, and B. Snopok, Biosens. Bioelectron., 90, 91-95 (2017).

    CAS  PubMed  Google Scholar 

  192. M. Manilo, P. M. Boltovets, B. Snopok, et al., Colloids Surface A, 520, 883-891 (2017).

    CAS  Google Scholar 

  193. P. M. Boltovets, O. M. Polishchuk, O. G. Kovalenko, and B. A. Snopok, Analyst, 138, 480-486 (2013).

    CAS  PubMed  Google Scholar 

  194. B. A. Snopok, S. Darekar, and E. V. Kashuba, Analyst, 137, 3767 (2012).

    CAS  PubMed  Google Scholar 

  195. P. Boltovets, S. Shinkaruk, C. Bennetau-Pelissero, et al., Talanta, 84, No. 3, 867-873 (2011).

    CAS  PubMed  Google Scholar 

  196. B. A. Snopok, P. N. Boltovets, and F. D. Rovell, Teor. Éksp. Khim., 42, No. 4, 210-216 (2006). [Theor. Exp. Chem., 42, No. 4, 217-223 (2006) (English translation).]

  197. B. A. Snopok, P. N. Boltovets, and F. D. Rovell, Teor. Éksp. Khim., 44, No. 3, 158-164 (2008). [Theor. Exp. Chem., 44, No. 3, 165-171 (2008) (English translation).]

  198. B. A. Snopok, P. N. Boltovets, and F. D. Rovell, Teor. Éksp. Khim., 42, No. 2, 96-101 (2006). [Theor. Exp. Chem., 42, No. 2, 106-112 (2006) (English translation).]

  199. S. V. Kolotilov, P. N. Boltovets, B. A. Snopok, and V. V. Polishchuk, Teor. Éksp. Khim., 42, No. 4, 204-209 (2006). [Theor. Exp. Chem., 42, No. 4, 211-216 (2006) (English translation).]

  200. C. R. Yonzon, E. Jeoung, S. Zou, et al., J. Am. Chem. Soc., 126, No. 9, 12669-12676 (2004).

    CAS  PubMed  Google Scholar 

  201. A. J. Haes and R. P. Duyne, Anal. Bioanal. Chem., 379, Nos. 7/8, 920-930 (2004), DOI: https://doi.org/10.1007/s00216-004-2708-9.

    Article  CAS  PubMed  Google Scholar 

  202. K. A. Willets and R. P. Van Duyne, Annu. Rev. Phys. Chem., 58, 267-297 (2007).

    CAS  PubMed  Google Scholar 

  203. N. Jeffrey, W. Anker, O. Lyandres, et al., Nat. Mater., 7, 442-453 (2008).

    Google Scholar 

  204. M. E. Stewart, C. R. Anderton, L. B. Thompson, et al., Chem. Rev., 108, 494-52 (2008).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. A. Snopok.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 56, No. 2, pp. 69-104, March-April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishchenko, I.M., Manoilov, É.G., Kravchenko, S.A. et al. Resonant Optical Phenomena in Heterogeneous Plasmon Nanostructures of Noble Metals: A Review. Theor Exp Chem 56, 67–110 (2020). https://doi.org/10.1007/s11237-020-09642-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09642-6

Key words

Navigation