Skip to main content
Log in

Effect of Aggregation of Acridine Orange on the Luminescent Characteristics of Its Composites with a Zinc-Containing Coordination Polymer

  • Published:
Theoretical and Experimental Chemistry Aims and scope

It was shown that the luminescent characteristics of the composites formed by the zinc-containing coordination polymer {[Zn(L)(NDC)]·0.5H2O}n (L = cyclam, NDC2– = 2,6-naphthalenedicarboxylate) with acridine orange depends on the ratio of the amounts of aggregated and isolated molecules of the dye, which in turn depends on the conditions under which the composites are produced. In all cases energy is transferred from the coordinated polymer to the dye, leading to bimodal luminescence in the composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. D. Farrusseng (ed.), Metal-Organic Frameworks Applications from Catalysis to Gas Storage, Wiley-VCH Verlag GmbH, Weinheim (2011).

    Google Scholar 

  2. L. R. Mac-Gillivray (ed.), Metal-Organic Frameworks Design and Application, John Wiley-VCH Verlag GmbH, Hoboken (2010).

    Google Scholar 

  3. M. Schröder (ed.), Functional Metal-Organic Frameworks: Gas Storage, Separation, and Catalysis, Springer, New York (2010).

    Google Scholar 

  4. L. R. Mac-Gillivray and C. M. Lukehart (eds.), Metal-Organic Framework Materials, John Wiley and Sons, Hoboken (2014).

    Google Scholar 

  5. K. B. Yatsimirskii and Ya. D. Lampeka, Physicochemistry of Complexes of Metals with Macrocyclic Ligands [in Russian], Nauk. Dumka, Kiev (1985).

    Google Scholar 

  6. Ya. D. Lampeka and L. V. Tsymbal, Teor. Éksp. Khim., 40, No. 6, 331-356 (2004). [Theor. Exp. Chem., 40, No. 6, 345-371 (2004) (English translation).]

  7. M. P. Suh and H. R. Moon, Adv. Inorg. Chem., R. van Eldik, K. Bowman-James (eds.), Acad. Press, San Diego (2006), Vol. 59, pp. 39-79.

  8. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, et al., Chem. Soc. Rev., 38, No. 5, 1330-1352 (2009).

    Article  CAS  Google Scholar 

  9. Z. Hu, B. J. Deibert, and J. Li, Chem. Soc. Rev., 43, No. 16, 5815-5840 (2014).

    Article  CAS  Google Scholar 

  10. Y. Cui, F. Zhu, B. Chen, and G. Qian, Chem. Commun., 51, No. 35, 7420-7431 (2015).

    Article  CAS  Google Scholar 

  11. Q.-R. Fang, G.-S. Zhu, Z. Jin, et al., Angew. Chem. Int. Ed., 46, No. 35, 6638-6642 (2007).

    Article  CAS  Google Scholar 

  12. G.-S. Yang, M.-N. Li, S.-L. Li, et al., J. Mater. Chem., 22, No. 34, 17947-17953 (2012).

    Article  CAS  Google Scholar 

  13. J. Yu, Y. Cui, C. Wu, et al., Angew. Chem. Int. Ed., 51, No. 42, 10542-10545 (2012).

    Article  CAS  Google Scholar 

  14. M.-J. Dong, M. Zhao, S. Ou, et al., Angew. Chem. Int. Ed., 53, 1575-1579 (2014).

    Article  CAS  Google Scholar 

  15. D. Yan, Y. Tang, H. Lin, et al., Sci. Rep., 4, 4337 (2014).

    Google Scholar 

  16. J. Bhattacharjee, S. A. Hussain, and D. Bhattacharjee, Spectrochim. Acta A, 116, 148-153 (2013).

    Article  CAS  Google Scholar 

  17. S.-H. Chou and M. J. Wirth, J. Phys. Chem., 93, No. 22, 7694-7698 (1989).

    Article  CAS  Google Scholar 

  18. C. Peyratout, E. Donath, and L. Daehne, J. Photochem. Photobiol. A, 142, No. 1, 51-57 (2001).

    Article  CAS  Google Scholar 

  19. J. Kapuscinski, Z. Darzynkiewicz, and M. R. Melamed, Cytometry, 2, No. 4, 201-211 (1982).

    Article  CAS  Google Scholar 

  20. J. Kapuscinski, J. Histochem. Cytochem., 38, No. 9, 1323-1329 (1990).

    Article  CAS  Google Scholar 

  21. A. S. Gupta, R. K. Deshpande, L. Liu, et al., CrystEngComm, 14, No. 18, 5701-5704 (2012).

    Article  Google Scholar 

  22. J.-M. Gu, S.-J. Kim, Y. Kim, and S. Huh, CrystEngComm, 14, No. 5, 1819-1824 (2012).

    Article  CAS  Google Scholar 

  23. E.-Y. Cho, J.-M. Gu, I.-H. Choi, et al., Cryst. Growth Des., 14, No. 10, 5026-5033 (2014).

    Article  CAS  Google Scholar 

  24. B. Tu, Q. Pang, D. Wu, et al., J. Am. Chem. Soc., 136, No. 41, 14465-14471 (2014).

    Article  CAS  Google Scholar 

  25. Ya. D. Lampeka, L. V. Tsymbal, A. V. Barna, et al., Dalton Trans., 41, No. 14, 4118-4125 (2012).

    Article  CAS  Google Scholar 

  26. M. E. Lamm and D. M. Neville, J. Phys. Chem., 69, No. 11, 3872-3877 (1965).

    Article  CAS  Google Scholar 

  27. S. V. Gaponenko, I. N. Germanenko, and A. P. Stupak, Appl. Phys. B, 58, No. 4, 283-288 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. D. Lampeka.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 51, No. 4, pp. 250-255, July-August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurtovyi, R.I., Tsymbal, L.V., Shova, S. et al. Effect of Aggregation of Acridine Orange on the Luminescent Characteristics of Its Composites with a Zinc-Containing Coordination Polymer. Theor Exp Chem 51, 259–265 (2015). https://doi.org/10.1007/s11237-015-9425-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-015-9425-7

Key words

Navigation