Skip to main content

Advertisement

Log in

Spectrally efficient IR-UWB pulse designs based on linear combinations of Gaussian Derivatives

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

Pulse design is critical for impulse radio communications, as it determines the transmission efficiency with respect to regulation spectral limits. In this paper, we propose the design of several novel pulse shapes relying on combinations of Gaussian derivatives with the target of improving the spectral efficiency. A general model for maximizing the efficiency of dual and triplet couplings is presented, employing the interior point global optimization algorithm. Then, the spectrum peak frequency is derived in closed form for any combination of two Gaussians with consecutive orders of derivation. The parameters controlling the time properties of the generated waveforms have been adequately adjusted to reach the best compliance with the spectral mask. Novel pulses have been investigated providing a high efficiency using simple generation mechanisms, which can be practically implemented via analog circuits. An efficiency gain of more than 20% has been realized by our newly designed triplet combination over the conventional 5th order Gaussian derivative. Results demonstrated the advantage of the proposed pulse shapes in terms of the bit error rate performance for 2 Gbps OOK and 1 Gbps PPM in AWGN and multipath channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liang, T., & Xie, Y. Z. (2021). Waveform shaping for maximizing the sharpness of receiving voltage waveform for an ultra-wideband antenna system. IEEE Transactions on Antennas and Propagation, 69(9), 5924–5930.

    Article  Google Scholar 

  2. Ali, R., Liu, R., Nayyar, A., Qureshi, B., & Cao, Z. (2021). Tightly coupling fusion of UWB ranging and IMU pedestrian dead reckoning for indoor localization. IEEE Access.

  3. Fang, Z., Wang, W., Wang, J., Liu, B., Tang, K., Lou, L., & Zheng, Y. (2022). Integrated wideband chip-scale RF transceivers for radar sensing and UWB communications: A survey. IEEE Circuits and Systems Magazine, 22(1), 40–76.

    Article  Google Scholar 

  4. Reyhanigalangashi, O., Taylor, D., Kolpuke, S., Elluru, D., Abushakra, F., Awasthi, A. K., & Gogineni, S. P. (2022). An RF-SoC-based ultra-wideband chirp synthesizer. IEEE Access.

  5. Feghhi, R., Oloumi, D., & Rambabu, K. (2020). Tunable subnanosecond Gaussian pulse radar transmitter: Theory and analysis. IEEE Transactions on Microwave Theory and Techniques, 68(9), 3823–3833.

    Article  Google Scholar 

  6. Chandel, R., Gautam, A. K., & Rambabu, K. (2018). Tapered fed compact UWB MIMO-diversity antenna with dual band-notched characteristics. IEEE Transactions on Antennas and Propagation, 66(4), 1677–1684.

    Article  Google Scholar 

  7. Nazeri, A. H., Falahati, A., & Edwards, R. M. (2019). A novel compact fractal UWB antenna with triple reconfigurable notch reject bands applications. AEU-International Journal of Electronics and Communications, 101, 1–8.

    Google Scholar 

  8. Yu, K., Wen, K., Li, Y., Zhang, S., & Zhang, K. (2018). A novel NLOS mitigation algorithm for UWB localization in harsh indoor environments. IEEE Transactions on Vehicular Technology, 68(1), 686–699.

    Article  Google Scholar 

  9. Taki, H., Azou, S., Hamie, A., Morel, P., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2018). Chirping techniques for enhancing the performance of SOA-based UWB over fiber systems: An experimental demonstration. AEU-International Journal of Electronics and Communications, 94, 221–225.

    Google Scholar 

  10. Federal Communications Commission, “Revision of Part 15 of the commission’s rules regarding ultra-wideband transmission systems, FIRST REPORT AND ORDER,” ET Docket 98-153, FCC 02-48, pp. 1–118, February 14 (2002).

  11. Lee, G., Park, J., Jang, J., Jung, T., & Kim, T. W. (2019). An IR-UWB CMOS transceiver for high-data-rate, low-power, and short-range communication. IEEE Journal of Solid-State Circuits.

  12. Liang, X., Zhang, H., Ye, S., Fang, G., & Gulliver, T. A. (2018). Improved denoising method for through-wall vital sign detection using UWB impulse radar. Digital Signal Processing, 74, 72–93.

    Article  Google Scholar 

  13. Shehata, M., Said, M. S., & Mostafa, H. (2019). A generalized framework for the performance evaluation of microwave photonic assisted IR-UWB waveform generators. IEEE Systems Journal, 13(4), 3724–3734.

    Article  Google Scholar 

  14. Du, C., Liu, F., Li, X., Zhang, Z., & Dong, W. (2020). UWB quadruplet signal generation based on a DP-QPSK modulator and a delay-line filter. Applied Optics, 59(14), 4404–4409.

    Article  Google Scholar 

  15. Moreira, L. C., Neto, J. F., Oliveira, W. S., Ferauche, T., & Novaes, G. A. S. (2019). A pseudo-raised cosine IR-UWB pulse generator with adaptive PSD using 130nm CMOS process. In 2019 IEEE 10th Latin American symposium on circuits & systems (LASCAS) (pp. 165–168). IEEE.

  16. Kaya, E., & Entesari, K. (2020). A broadband CMOS pulse generator for UWB Systems. In 2020 IEEE radio and wireless symposium (RWS) (pp. 9–11). IEEE.

  17. Biswas, D. K., & Mahbub, I. (2021). A low-power duty-cycled impulse-radio ultrawideband (IR-UWB) transmitter with bandwidth and frequency reconfigurability scheme designed in 180 nm CMOS process. In 2021 IEEE radio and wireless symposium (RWS) (pp. 49–52). IEEE.

  18. Mu, H., Wang, M., Tang, Y., Zhang, J., & Jian, S. (2018). Photonic generation of FCC-compliant UWB pulses based on modified Gaussian quadruplet and incoherent wavelength-to-time conversion. Optics Communications, 411, 170–174.

    Article  Google Scholar 

  19. Mu, H., Wang, M., & Li, M. (2019). Power-efficient FCC-compliant UWB generator using polarization-maintaining FBG-based spectral shaper and incoherent wavelength-to-time mapping. Optical Fiber Technology, 50, 271–276.

    Article  Google Scholar 

  20. Kikkawa, T., Masui, Y., Toya, A., Ito, H., Hirano, T., Maeda, T., & Iwata, A. (2020). CMOS Gaussian monocycle pulse transceiver for radar-based microwave imaging. IEEE Transactions on Biomedical Circuits and Systems, 14(6), 1333–1345.

    Article  Google Scholar 

  21. Vauche, R., Muhr, E., Fourquin, O., Bourdel, S., Gaubert, J., Dehaese, N., & Ouvry, L. (2017). A 100 MHz PRF IR-UWB CMOS transceiver with pulse shaping capabilities and peak voltage detector. IEEE Transactions on Circuits and Systems I: Regular Papers, 64(6), 1612–1625.

    Article  Google Scholar 

  22. Kim, H., & Joo, Y. (2005, June). Fifth-derivative Gaussian pulse generator for UWB system. In 2005 IEEE radio frequency integrated Circuits (RFIC) symposium-digest of papers (pp. 671–674). IEEE.

  23. Taki, H. (2017). On ultra-wideband over fiber transmission systems employing semiconductor optical amplifiers (Doctoral dissertation, Université de Bretagne occidentale-Brest).

  24. Sheng, H., Orlik, P., Haimovich, A. M., Cimini, L. J., & Zhang, J. (2003). On the spectral and power requirements for ultra-wideband transmission. In IEEE international conference on communications, 2003. ICC’03. (Vol. 1, pp. 738–742). IEEE.

  25. Rahman, M., & Wu, K. (2022). A reconfigurable picosecond pulse generator in non-linear transmission line for impulse radar ultrawideband applications. IEEE Microwave and Wireless Components Letters.

  26. Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2016). Improving the power efficiency of SOA-based UWB over fiber systems via pulse shape randomization. Optical Fiber Technology, 31, 161–167.

    Article  Google Scholar 

  27. Menon, M. D., Rodrigues, J., & Gudino, L. J. (2020). Synthesis of UWB pulse shaper for efficient pulse propagation in human tissue. In 2020 12th international symposium on communication systems, networks and digital signal processing (CSNDSP) (pp. 1–5). IEEE.

  28. Rahman, M., Haider, A., & Naghshvarianjahromi, M. (2020). A systematic methodology for the time-domain ringing reduction in UWB band-notched antennas. IEEE Antennas and Wireless Propagation Letters, 19(3), 482–486.

    Article  Google Scholar 

  29. Nowakowski, M., & Idzkowski, A. (2020). Ultra-wideband signal transmission according to European regulations and typical pulses. In 2020 International conference mechatronic systems and materials (MSM) (pp. 1–4). IEEE.

  30. Karimov, A., Feghhi, R., Sabzevari, F. M., Winter, R. S., Fedosejevs, R., & Rambabu, K. (2022). Design and development of a high-power pulse transmitter for underground environmental perception. IEEE Transactions on Microwave Theory and Techniques, 70(5), 2891–2903.

    Article  Google Scholar 

  31. Abraha, S. T., Okonkwo, C., Gamage, P. A., Tangdiongga, E., & Koonen, T. (2012). Routing of power efficient IR-UWB wireless and wired services for in-building network applications. Journal of Lightwave Technology, 30(11), 1651–1663.

    Article  Google Scholar 

  32. Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A. (2017). Simple pre-distortion schemes for improving the power efficiency of SOA-based IR-UWB over fiber systems. Optics Communications, 382, 225–231.

    Article  Google Scholar 

  33. Taki, H., Azou, S., Hamie, A., Al Housseini, A., Alaeddine, A., & Sharaiha, A.: “On phaser-based processing of impulse radio UWB over fiber systems employing SOA. Optical Fiber Technology, 36, 33–40 (2017).

  34. Radic, J., Brkic, M., Djugova, A., Videnovic-Misic, M., Goll, B., & Zimmermann, H. (2020). Ultra-low power low-complexity 3–7.5 GHz IR-UWB transmitter with spectrum tunability. IET Circuits, Devices & Systems, 14(4), 521–527.

    Article  Google Scholar 

  35. de Jesus Aragão, A., de Carvalho, D., Sanches, B., & Van Noije, W. A. (2020). An improved confocal algorithm for breast cancer detection using UWB signals. In 2020 IEEE 11th Latin American symposium on circuits & systems (LASCAS) (pp. 1–4). IEEE.

  36. Taki, H., Mansour, A., Azou, S., Nasser, A., & Yao, K. (2020). Pulse parity modulation for impulse radio UWB transmission based on non-coherent detection. Physical Communication, 40, 101061.

    Article  Google Scholar 

  37. Soliman, S. S., Shehata, M., & Mostafa, H. (2022). Generation of low-complexity power-efficient IR-UWB waveforms. Optik, 251, 168245.

    Article  Google Scholar 

  38. Li, C., Han, X., Fu, S., Gu, Y., Wu, Z., & Zhao, M. (2022). Experimental generation of reconfigurable ultra-wideband signal based on the pulse difference by using optical polarization synthesis. IEEE Photonics Journal, 14(3), 1–9.

    Google Scholar 

  39. Abraha, S. T., Okonkwo, C., Yang, H., Visani, D., Shi, Y., Jung, H. D., & Koonen, T. (2011). Performance evaluation of IR-UWB in short-range fiber communication using linear combination of monocycles. Journal of Lightwave Technology, 29(8), 1143–1151.

    Article  Google Scholar 

  40. Mirshafiei, M., Abtahi, M., & Rusch, L. A. (2012). Ultra-wideband pulse shaping: Bypassing the inherent limitations of the Gaussian monocycle. IET Communications, 6(9), 1068–1074.

    Article  Google Scholar 

  41. Peilin, L., Qingsong, Z., Jianyun, Z., & Lei, L. (2018). Pulse design for UWB based on the combination of Gaussian derivatives. In 2018 10th international conference on communication software and networks (ICCSN) (pp. 438–441). IEEE.

  42. Maaref, A., & Elahmar, S. A. (2021). UWB pulse design method using firefly algorithm. Radioelectronics and Communications Systems, 64(3), 140–146.

    Article  Google Scholar 

  43. Rodrigues, J., MK, D. M., Lonappan, L., & Gudino, L. J. (2020). Spectral efficient pulse shaping for impulse radio ultra wideband communications. Helix, 10(02), 226–231.

    Article  Google Scholar 

  44. Amini, A., Esfahani, P. M., Ghavami, M., & Marvasti, F. (2019). UWB orthogonal pulse design using Sturm–Liouville boundary value problem. Signal Processing, 159, 147–158.

    Article  Google Scholar 

  45. Feghhi, R., Winter, R., & Rambabu, K. (2022). A high-performance UWB Gaussian pulse generator: Analysis and design. IEEE Transactions on Microwave Theory and Techniques.

  46. Sadat, S. A. (2021). Evaluating the performance of various ACOPF formulations using nonlinear interior-point method. In 2021 IEEE international smart cities conference (ISC2) (pp. 1–7). IEEE.

  47. Dahl, J., & Andersen, E. D. (2021). A primal-dual interior-point algorithm for nonsymmetric exponential-cone optimization. Mathematical Programming, 1–30.

  48. Zhang, M., Huang, K., & Lv, Y. (2022). A wide neighborhood arc-search interior-point algorithm for convex quadratic programming with box constraints and linear constraints. Optimization and Engineering, 23(2), 1117–1137.

    Article  Google Scholar 

  49. Touil, I., & Chikouche, W. (2022). Novel kernel function with a hyperbolic barrier term to primal-dual interior point algorithm for SDP problems. Acta Mathematicae Applicatae Sinica, English Series, 38(1), 44–67.

    Article  Google Scholar 

  50. Khalesi, H., & Ghods, V. (2021). An optimized IR-UWB communication system with interference reduction on a narrowband system using genetic algorithm. Wireless Personal Communications.

  51. Niu, W., Chen, H., Zhang, J., Ha, Y., Zou, P., & Chi, N. (2021). Nonlinearity mitigation based on modulus pruned look-up table for multi-bit delta-sigma 32-CAP modulation in underwater visible light communication system. IEEE Photonics Journal.

  52. Liu, K., & Liu, Y. A. (2021). Adjustable nonlinear companding transform based on scaling of probability density function for PAPR reduction in OFDM systems. IEEE Transactions on Broadcasting.

  53. Cai, X., Xu, W., Wang, L., & Kaddoum, G. (2022). Joint energy and correlation detection assisted non-coherent OFDM-DCSK system for underwater acoustic communications. IEEE Transactions on Communications.

  54. Carlton, B. D., & Metcalf, J. G. (2022). Orthogonal frequency peak-to-average power ratio reduction via the error reduction algorithm. In 2022 IEEE radar conference (RadarConf22) (pp. 1–6). IEEE.

  55. Xie, H., Wang, X., Wang, A., Zhao, B., Zhou, Y., Qin, B., & Wang, Z. (2008). A varying pulse width 5th-derivative Gaussian pulse generator for UWB transceivers in CMOS. In 2008 IEEE radio and wireless symposium (pp. 171–174). IEEE.

  56. Yang, Y., Zhang, Q., Xu, C., & Chen, E. (2021). Design of ultra-wideband power amplifier module. In 2021 IEEE 15th international conference on electronic measurement & instruments (ICEMI) (pp. 132–136). IEEE.

  57. D’Amico, A. A., Colavolpe, G., Foggi, T., & Morelli, M. (2022). Timing synchronization and channel estimation in free-space optical OOK communication systems. IEEE Transactions on Communications.

  58. Munirathinam, R., Aboltins, A., Pikulins, D., & Grizans, J. (2021). Chaotic non-coherent pulse position modulation based ultra-wideband communication system. In 2021 IEEE microwave theory and techniques in wireless communications (MTTW) (pp. 1–6). IEEE.

  59. Taki, H., Mansour, A., Nasser, A., & Yao, K. (2019). On optimizing the performance of impulse radio pulse position modulation based on UWB Gaussian pulse derivatives. In 2019 Fourth international conference on advances in computational tools for engineering applications (ACTEA) (pp. 1–5). IEEE.

  60. Landolsi, M. A., & Hussain, M. G. (2021). Pulse-shaped Walsh–Hadamard orthogonal signaling for multiuser DS-UWB systems. IEEE Systems Journal.

  61. Jajodia, B., Mahanta, A., & Ahamed, S. R. (2020). IEEE 802.15. 6 WBAN standard compliant IR-UWB time-hopping PPM transmitter using SRRC signaling pulse. AEU-International Journal of Electronics and Communications, 117, 153119.

  62. Ershadh, M., & Meenakshi, M. (2021). A computationally lightest and robust neural network receiver for ultra wideband time hopping communication systems. IEEE Transactions on Vehicular Technology, 70(5), 4657–4668.

    Article  Google Scholar 

  63. Liang, Z., Zhang, G., Dong, X., & Huo, Y. (2018). Design and analysis of passband transmitted reference pulse cluster UWB systems in the presence of phase noise. IEEE Access, 6, 14954–14965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Haidar Taki: Material preparation, Investigation, Methodology, Software, and analysis. Chadi Abou-Rjeily: Conceptualization, Review, and editing.

Corresponding author

Correspondence to Haidar Taki.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest. The authors also declare that no funds, grants, or other support were received during the preparation of this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Apply frequency derivative to the power spectral density in Eq. (24), then \(S_{4,4}'(f)= \)

$$\begin{aligned}&4 a^2 A_4^2 \Big [8 (2 \pi f)^7 2 \pi + (2 \pi f)^8 (-8 \pi ^2 f \sigma ^2) \Big ] e^{ -4 ( \pi f \sigma )^2 } {\cos ^2( \pi f \delta )} \nonumber \\&\quad - 4 a^2 A_4^2 \big (2\pi f \big )^8 e^{ -4 ( \pi f \sigma )^2 } 2 \cos ( \pi f \delta ) \sin ( \pi f \delta ) \pi \delta \end{aligned}$$
(44)

To find \(f_{peak}\) state \(S_{4,4}'(f)= 0\), given that for finite nonzero frequencies

\(4 a^2 A_4^2 \big (2\pi f \big )^7 e^{ -4 ( \pi f \sigma )^2 } \ne 0 \), then

$$\begin{aligned}&\Big [16 \pi - 2 \pi f (8 \pi ^2 f \sigma ^2) \Big ] {\cos ^2( \pi f \delta )} - 2 \big (2\pi f \big ) \nonumber \\&\quad \cos ( \pi f \delta ) \sin ( \pi f \delta ) \pi \delta = 0 \end{aligned}$$
(45)

Hence, either \(\cos ( \pi f \delta )= 0\), or

$$\begin{aligned}&\Big [16 \pi - 2 \pi f (8 \pi ^2 f \sigma ^2) \Big ] {\cos ( \pi f \delta )} \nonumber \\&\quad - 2 \big (2\pi f \big ) \sin ( \pi f \delta ) \pi \delta = 0 \end{aligned}$$
(46)

It is assumed that the time delay \(\delta \) should not exceed 10% of the pulse period (0.5 ns), in order to avoid a large truncation of the pulse energy, therefore, we assume that \(\delta \le \) 50 ps. The power has to be concentrated in the UWB allocated band ([3.1-10.6] GHz), and the peak frequency is expected to lie at the mid interval of the desired band, as the 10 dB bandwidth has to be relatively large to cover a wide spectral margin under the regular mask. Hence, for practical values of \(\delta \) and f, \(\cos ( \pi f \delta )\) is different from 0, while for Eq. (46) it is sufficient the third order of Taylor series to approximate the sine and cosine functions:

\(\sin (\pi f \delta )= (\pi f \delta )- (\pi f \delta )^3/6\)

\(\cos (\pi f \delta )= 1-(\pi f \delta )^2/2 \)

Following these approximations, Eq. (46) can be simplified to eventually reach a polynomial form:

$$\begin{aligned}&\Big [8 \pi - 2 \pi f (4 \pi ^2 f \sigma ^2) \Big ] \Big ( 1-(\pi f \delta )^2/2 \Big ) \nonumber \\&\quad - \big (2\pi f \big ) \Big ( (\pi f \delta )- (\pi f \delta )^3/6 \Big ) \pi \delta = 0 \end{aligned}$$
(47)

Expand and let \(z=(\pi f)^2\), then

$$\begin{aligned} \delta ^2 \Big [12 \sigma ^2 + \delta ^2 \Big ] z^2 -6 \Big [ 3 \delta ^2 + 4 \sigma ^2 \Big ] z + 24 = 0 \end{aligned}$$
(48)

Which is a second degree equation, while

$$\begin{aligned} \Delta = 12 \Big [ 19 \delta ^4 - 24 \delta ^2 \sigma ^2 + 48 \sigma ^4 \Big ] \end{aligned}$$
(49)

Therefore,

$$\begin{aligned} z = \frac{ 6 \Big [ 3 \delta ^2 + 4 \sigma ^2 \Big ] \pm \sqrt{ 12 \Big [ 19 \delta ^4 - 24 \delta ^2 \sigma ^2 + 48 \sigma ^4 \Big ] }}{2 \delta ^2 \Big [12 \sigma ^2 + \delta ^2 \Big ] } \end{aligned}$$
(50)

Hence, to reach a peak frequency value within the [3.1-10.6] GHz band, the expression of \(f_{peak}\) is as provided in Eq. (25).

Appendix B

The frequency derivative of \(S_{5,6}(f)\) provided in (31) is

$$\begin{aligned} S_{5,6}'(f)= & {} \big (2\pi f\big )^{10} e^{ -4 ( \pi f \sigma )^2 } {A_5}^2 \times \nonumber \\&\Big [-4 a_5 a_6 \pi \sqrt{\frac{2}{11}}\, \sigma \big ( \sin (2\pi f \delta ) + 2 \pi f \delta \cos (2\pi f \delta ) \big ) \nonumber \\&+ 8{\pi }^2 f {a_6}^2 \frac{2}{11} \sigma ^2 \Big ]\nonumber \\&+{A_5}^2\Big [20\pi (2\pi f\big )^{9} e^{ -4 ( \pi f \sigma )^2 } + \big (2\pi f\big )^{10} e^{ -4 ( \pi f \sigma )^2 }\nonumber \\&\big (-8{\pi }^2 f {\sigma }^2 \big ) \Big ] \nonumber \\&\times \Big [ {a_5}^2 - 4 a_5 \sin (2\pi f \delta ) a_6 \sqrt{\frac{2}{11}}\, \sigma \pi f \nonumber \\&+ {a_6}^2 \frac{2}{11} \sigma ^2 (2\pi f)^2 \Big ] \end{aligned}$$
(51)

At the peak frequency, \(S_{5,6}'(f)=0\), and knowing that \(A_5 \ne 0\), then for finite nonzero frequencies:

$$\begin{aligned}&-4 a_5 a_6 \pi \sqrt{\frac{2}{11}}\, \sigma \Big ( \sin (2\pi f \delta ) 2 \pi f + 2 f^2 \pi \cos (2\pi f \delta ) 2 \pi \delta \Big ) \nonumber \\&\quad + 16{\pi }^3 f^2 {a_6}^2 \frac{2}{11} \sigma ^2 + \Big (20\pi - 16{\pi }^3 f^2 {\sigma }^2 \Big ) \times \nonumber \\&\quad \Big ( {a_5}^2 - 4 a_5 \sin (2\pi f \delta ) a_6 \sqrt{\frac{2}{11}}\, \sigma \pi f + {a_6}^2 \frac{2}{11} \sigma ^2 (2\pi f)^2 \Big )=0 \end{aligned}$$
(52)

What determines the pulse design is the relative amplitude of candidate waveforms, hence \(a_5\) can be fixed at 1 for simplicity, while the resultant pulse dynamics will depend on the value of \(a_6\) with respect to \(a_5=1\). Therefore

$$\begin{aligned}&- a_6 \sqrt{\frac{2}{11}}\, \sigma \Big ( \sin (2\pi f \delta ) 2 \pi f + 4 f^2 {\pi }^2 \cos (2\pi f \delta ) \delta \Big )\nonumber \\&\quad + 4{\pi }^2 f^2 {a_6}^2 \frac{2}{11} \sigma ^2 + \Big (5 - 4{\pi }^2 f^2 {\sigma }^2 \Big ) \times \nonumber \\&\quad \Big ( 1 - 4 \sin (2\pi f \delta ) a_6 \sqrt{\frac{2}{11}}\, \sigma \pi f + {a_6}^2 \frac{2}{11} \sigma ^2 4{\pi }^2 f^2 \Big )=0 \end{aligned}$$
(53)

While in “Appendix A”, the third order Taylor series expansion of the sinusoids yielded an acceptable level of accuracy, a fourth order expansion is needed in this “Appendix” for an improved accuracy:

\(\sin (2\pi f \delta )= (2\pi f \delta )- (2\pi f \delta )^3/6\)

\(\cos (2\pi f \delta )= 1-(2\pi f \delta )^2/2 + (2\pi f \delta )^4/24\)

Following these approximations, Eq. (53) can be simplified to eventually reach a polynomial form:

$$\begin{aligned}&- 2 a_6 \sqrt{\frac{2}{11}}\, \sigma \delta (2\pi f)^2 + 4 a_6 \sqrt{\frac{2}{11}}\, \sigma (2\pi f)^4 {\delta }^3/6 \nonumber \\&\quad - a_6 \sqrt{\frac{2}{11}}\, \sigma (2\pi f)^6 {\delta }^5 /24 \nonumber \\&\quad + (2{\pi } f)^2 {a_6}^2 \frac{2}{11} \sigma ^2 + 5 + 5 \Big (-2 a_6 \sqrt{\frac{2}{11}} \sigma \delta \nonumber \\&\quad + {a_6}^2 \frac{2}{11} {\sigma }^2 \Big )(2 \pi f)^2 \nonumber \\&\quad + 5 \times 2 a_6 \sqrt{\frac{2}{11}} \sigma {\delta }^3 (2\pi f)^4 /6 - (2{\pi } f)^2 {\sigma }^2 \nonumber \\&\quad - {\sigma }^2 \Big (-2 a_6 \sqrt{\frac{2}{11}} \sigma \delta + {a_6}^2 \frac{2}{11} {\sigma }^2 \Big )(2 \pi f)^4\nonumber \\&\quad - 2 {\sigma }^2 a_6 \sqrt{\frac{2}{11}} \sigma {\delta }^3 (2\pi f)^6 /6 =0 \end{aligned}$$
(54)

Let \(U=(2\pi f)^2\), then arrange to obtain:

$$\begin{aligned}&\Big [ - 12 a_6 \sqrt{\frac{2}{11}}\, \sigma \delta + 6 {a_6}^2 \frac{2}{11} \sigma ^2 - {\sigma }^2 \Big ] U \nonumber \\&\quad + \sqrt{\frac{2}{11}} a_6 \sigma \Big [ 14 {\delta }^3 /6 + 2 {\sigma }^2 \delta - {a_6} \sqrt{\frac{2}{11}} {\sigma }^3 \Big ] U^2 \nonumber \\&\quad + a_6 \sqrt{\frac{2}{11}} {\delta }^3 \sigma \Big [ - {\delta }^2 /24 - {\sigma }^2 /3 \Big ] U^3 + 5 = 0 \end{aligned}$$
(55)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taki, H., Abou-Rjeily, C. Spectrally efficient IR-UWB pulse designs based on linear combinations of Gaussian Derivatives. Telecommun Syst 81, 269–288 (2022). https://doi.org/10.1007/s11235-022-00940-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-022-00940-z

Keywords

Navigation