Skip to main content

Advertisement

Log in

Survey on artificial intelligence based techniques for emerging robotic communication

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper reviews the current development of artificial intelligence (AI) techniques for the application area of robot communication. The research of the control and operation of multiple robots collaboratively toward a common goal is fast growing. Communication among members of a robot team and even including humans is becoming essential in many real-world applications. The survey focuses on the AI techniques for robot communication to enhance the communication capability of the multi-robot team, making more complex activities, taking an appreciated decision, taking coordinated action, and performing their tasks efficiently. We present a comprehensive review of the intelligent solutions for robot communication which have been proposed in the literature in recent years. This survey contributes to a better understanding of the AI techniques for enhancing robot communication and sheds new lights on future research direction in the subject area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akat, S. B., Gazi, V., & Marques, L. (2010). Asynchronous particle swarm optimization-based search with a multi-robot system: Simulation and implementation on a real robotic system. Turkish Journal of Electrical Engineering & Computer Sciences, 18(5), 749–764.

    Google Scholar 

  2. Al Islam, A. A., & Raghunathan, V. (2015). iTCP: An intelligent TCP with neural network based end-to-end congestion control for ad-hoc multi-hop wireless mesh networks. Wireless Networks, 21(2), 581–610.

    Article  Google Scholar 

  3. Al-Sakran, H. O. (2015). Intelligent traffic information system based on integration of internet of things and agent technology. International Journal of Advanced Computer Science and Applications (IJACSA), 6(2), 37–43.

    Google Scholar 

  4. Algabri, M., Mathkour, H., Mekhtiche, M. A., Bencherif, M. A., Alsulaiman, M., Arafah, M. A., et al. (2017). Wireless vision-based fuzzy controllers for moving object tracking using a quadcopter. International Journal of Distributed Sensor Networks, 13(4), 1550147717705549.

    Article  Google Scholar 

  5. Alsamhi, S., Ansari, M., Hebah, M., Ahmed, A., Hatem, A., & Alasali, M. (2018). Adaptive handoff prediction and appreciate decision using ANFIS between terrestrial communication and HAP. SCIREA Journal of Agriculture, 3(1), 19–33.

    Google Scholar 

  6. Alsamhi, S., Ma, O., & Ansari, M. (2018). Predictive estimation of the optimal signal strength from unmanned aerial vehicle over internet of things using ANN. arXiv preprint arXiv:1805.07614.

  7. Alsamhi, S. H. (2015). Quality of service (QoS) enhancement techniques in high altitude platform based communication networks. Electronics Engineering Ph.D., p. 155.

  8. Alsamhi, S. H., & Rajput, N. S. (2015). Implementation of call admission control technique in hap for enhanced qos in wireless network deployment. Telecommunication Systems, 1–11, https://doi.org/10.1007/s11235-015-0108-4.

    Article  Google Scholar 

  9. Alsamhi, S. H., & Rajput, N. S. (2015). An intelligent hand-off algorithm to enhance quality of service in high altitude platforms using neural network. Wireless Personal Communications, 82(4), 2059–2073. https://doi.org/10.1007/s11277-015-2333-2.

    Article  Google Scholar 

  10. Alsamhi, S. H., & Rajput, N. S. (2016). An efficient channel reservation technique for improved QoS for mobile communication deployment using high altitude platform. Wireless Personal Communications, 91(3), 1095–1108. https://doi.org/10.1007/s11277-016-3514-3.

    Article  Google Scholar 

  11. Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.

    Article  Google Scholar 

  12. Arsénio, A., Serra, H., Francisco, R., Nabais, F., Andrade, J., & Serrano, E. (2014). Internet of intelligent things: Bringing artificial intelligence into things and communication networks. In F. Xhafa & N. Bessis (Eds.), Inter-cooperative collective intelligence: Techniques and applications (pp. 1–37). Berlin, Heidelberg: Springer.

    Google Scholar 

  13. Barriquello, C. H., e Silva, F. E. S., Bernardon, D. P., Canha, L. N., Ramos, M. J. D. S., & Porto, D. S. (2018). Fundamentals of wireless communication link design for networked robotics. https://www.intechopen.com/books/service-robots/fundamentals-of-wireless-communication-link-designfor-networked-robotics.

  14. Bassil, Y. (2012). Neural network model for path-planning of robotic rover systems. arXiv preprint arXiv:1204.0183.

  15. Bassil, Y. (2012). Service-oriented architecture for space exploration robotic rover systems. arXiv preprint arXiv:1204.0185.

  16. Bekmezci, I., Ermis, M., & Kaplan, S. (2014). Connected multi UAV task planning for flying ad hoc networks. In 2014 IEEE international black sea conference on communications and networking (BlackSeaCom) (pp. 28–32).

  17. Bianco, R., & Nolfi, S. (2004). Toward open-ended evolutionary robotics: Evolving elementary robotic units able to self-assemble and self-reproduce. Connection Science, 16(4), 227–248.

    Article  Google Scholar 

  18. Boillot, N., Dhoutaut, D., & Bourgeois, J. (2014). Using nano-wireless communications in micro-robots applications. In Proceedings of ACM the first annual international conference on nanoscale computing and communication (p. 10).

  19. Cappelli, M. A. (2015). Regulation on safety and civil liability of intelligent autonomous robots: The case of smart cars.

  20. Challita, U., Ferdowsi, A., Chen, M., & Saad, W. (2018). Artificial intelligence for wireless connectivity and security of cellular-connected UAVs. arXiv preprint arXiv:1804.05348.

  21. Challita, U., Saad, W., & Bettstetter, C. (2018). Cellular-connected UAVs over 5G: Deep reinforcement learning for interference management. arXiv preprint arXiv:1801.05500.

  22. Chen, M., & Leung, V. C. (2018). From cloud-based communications to cognition-based communications: A computing perspective. Computer Communications, 128, 74–79.

    Article  Google Scholar 

  23. Chen, M., Mozaffari, M., Saad, W., Yin, C., Debbah, M., & Hong, C. S. (2017). Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE Journal on Selected Areas in Communications, 35(5), 1046–1061.

    Article  Google Scholar 

  24. Chen, M., Saad, W., & Yin, C. (2017). Echo state learning for wireless virtual reality resource allocation in UAV-enabled LTE-U networks. arXiv preprint arXiv:1708.00921.

  25. Chen, M., Saad, W., & Yin, C. (2017). Liquid state machine learning for resource allocation in a network of cache-enabled LTE-U UAVs. In GLOBECOM 2017–2017 IEEE global communications conference (pp. 1–6).

  26. Chen, Y., & Hu, H. (2013). Internet of intelligent things and robot as a service. Simulation Modelling Practice and Theory, 34, 159–171.

    Article  Google Scholar 

  27. Chen, Y. F., Liu, M., Everett, M., & How, J. P. (2017). Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning. In 2017 IEEE international conference on robotics and automation (ICRA) (pp. 285–292).

  28. Dauphin, L., Adjih, C., Petersen, H., & Baccelli, E. (2017). Low-cost robots in the internet of things: Hardware, software & communication aspects. In Proceedings of the 2017 international conference on embedded wireless systems and networks (pp. 284–289).

  29. Dawood, F., & Loo, C. K. (2016). Incremental episodic segmentation and imitative learning of humanoid robot through self-exploration. Neurocomputing, 173, 1471–1484.

    Article  Google Scholar 

  30. Di, M., & Joo, E. M. (2007). A survey of machine learning in wireless sensor netoworks from networking and application perspectives. In 2007 6th international conference on information, communications & signal processing (pp. 1–5).

  31. Dinh-Van, N., Nashashibi, F., Thanh-Huong, N., & Castelli, E. (2017). Indoor intelligent vehicle localization using WiFi received signal strength indicator. In 2017 IEEE MTT-S international conference on microwaves for intelligent mobility (ICMIM) (pp. 33–36).

  32. Doriya, R., Mishra, S., & Gupta, S. (2015). A brief survey and analysis of multi-robot communication and coordination. In 2015 international conference on computing, communication & automation (ICCCA) (pp. 1014–1021).

  33. Dutta, V., & Zielinska, T. (2015). Networking technologies for robotic applications. arXiv preprint arXiv:1505.07593.

  34. Elleuch, M., Kaaniche, H., & Ayadi, M. (2015). Exploiting neuro-fuzzy system for mobility prediction in wireless ad-hoc networks. In International work-conference on artificial neural networks (pp. 536–548).

  35. Fernandes, L. C., Souza, J. R., Pessin, G., Shinzato, P. Y., Sales, D., Mendes, C., et al. (2014). Carina intelligent robotic car: Architectural design and applications. Journal of Systems Architecture, 60(4), 372–392.

    Article  Google Scholar 

  36. Ferranti, L., & Cuomo, F. (2017). Nano-wireless communications for microrobotics: An algorithm to connect networks of microrobots. Nano Communication Networks, 12, 53–62.

    Article  Google Scholar 

  37. Fink, J. (2011). Communication for teams of networked robots. Ph.D. thesis. University of Pennsylvania. https://repository.upenn.edu/cgi/viewcontent.cgi?article=1496&context=edissertations.

  38. Gerla, M., Lee, E. K., Pau, G., & Lee, U. (2014). Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds. In 2014 IEEE world forum on internet of things (WF-IoT) (pp. 241–246).

  39. Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.

    Article  Google Scholar 

  40. Ghouti, L., Sheltami, T. R., & Alutaibi, K. S. (2013). Mobility prediction in mobile ad hoc networks using extreme learning machines. Procedia Computer Science, 19, 305–312.

    Article  Google Scholar 

  41. Girimonte, D., & Izzo, D. (2007). Artificial intelligence for space applications (pp. 235–253). London: Springer.

    Google Scholar 

  42. Glazunov, V., Utkin, L., Ryabinin, M., & Popov, S. (2017). The rules selection algorithm for network traffic of robot groups in intelligent transportation systems. In 2017 XX IEEE international conference on soft computing and measurements (SCM) (pp. 533–535).

  43. Goeddel, R., & Olson, E. (2016). Learning semantic place labels from occupancy grids using CNNs. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 3999–4004).

  44. Grieco, L. A., Rizzo, A., Colucci, S., Sicari, S., Piro, G., Di Paola, D., et al. (2014). IoT-aided robotics applications: Technological implications, target domains and open issues. Computer Communications, 54, 32–47.

    Article  Google Scholar 

  45. Gu, D. L., Pei, G., Ly, H., Gerla, M., Zhang, B., & Hong, X. (2000). UAV aided intelligent routing for ad-hoc wireless network in single-area theater. In Wireless communications and networking conference, 2000. WCNC. 2000 IEEE, (Vol. 3, pp. 1220–1225).

  46. Gueaieb, W., & Miah, M. S. (2008). An intelligent mobile robot navigation technique using RFID technology. IEEE Transactions on Instrumentation and Measurement, 57(9), 1908–1917.

    Article  Google Scholar 

  47. Guzey, H., Vignesh, N., Jagannathan, S., Dierks, T., & Acar, L. (2017). Distributed consensus-based event-triggered approximate control of nonholonomic mobile robot formations. American Control Conference (ACC), 2017, 3194–3199.

    Google Scholar 

  48. Hauert, S., Zufferey, J. C., & Floreano, D. (2009). Evolved swarming without positioning information: An application in aerial communication relay. Autonomous Robots, 26(1), 21–32.

    Article  Google Scholar 

  49. Hvizdoš, J., Vojtko, I., Koscelanský, M., Pavlov, J., Vaščák, J., & Sinčák, P. (2017). Applications of remote controlled robotics in the intelligent space. In 2017 IEEE 15th international symposium on applied machine intelligence and informatics (SAMI) (pp. 000117–000122).

  50. Irizarry, J., Gheisari, M., Williams, G., & Roper, K. (2014). Ambient intelligence environments for accessing building information: A healthcare facility management scenario. Facilities, 32(3/4), 120–138.

    Article  Google Scholar 

  51. Jin, X. B., Su, T. L., Kong, J. L., Bai, Y. T., Miao, B. B., & Dou, C. (2018). State-of-the-art mobile intelligence: Enabling robots to move like humans by estimating mobility with artificial intelligence. Applied Sciences, 8(3), 379.

    Article  Google Scholar 

  52. Kelley, R., Wigand, L., Hamilton, B., Browne, K., Nicolescu, M., & Nicolescu, M. (2012). Deep networks for predicting human intent with respect to objects. In Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction (pp. 171–172).

  53. Kubota, N., & Nishida, K. (2005). Fuzzy computing for communication of a partner robot based on imitation. In Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005 (pp. 4380–4385).

  54. Lee, J. H., & Hashimoto, H. (2002). Intelligent space-concept and contents. Advanced Robotics, 16(3), 265–280.

    Article  Google Scholar 

  55. Li, H., Yang, S. X., & Seto, M. L. (2009). Neural-network-based path planning for a multirobot system with moving obstacles. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(4), 410–419.

  56. Li, L., Ota, K., & Dong, M. (2018). Sustainable CNN for robotic: An offloading game in the 3D vision computation. IEEE Transactions on Sustainable Computing, 4, 67–76.

    Article  Google Scholar 

  57. Liu, H., Liu, S., & Zheng, K. (2018). A reinforcement learning-based resource allocation scheme for cloud robotics. IEEE Access, 6, 17215–17222.

    Article  Google Scholar 

  58. Liu, L., Liu, S., Zhang, Z., Yu, B., Tang, J., & Xie, Y. (2018). Pirt: A runtime framework to enable energy-efficient real-time robotic applications on heterogeneous architectures. arXiv preprint arXiv:1802.08359.

  59. Louis, K. A. B., Tarun, K., Teja, T., & Kiran, B. S. (2017). Intelligence spy robot with wireless night vision camera using android application. International Journal for Modern Trends in Science and Technology, 3, 01–05.

    Google Scholar 

  60. Marconato, E. A., Rodrigues, M., Pires, R. d. M., Pigatto, D. F., Luiz Filho, C. Q., Pinto, A. R., Branco, K. R. (2017). Avens-a novel flying ad hoc network simulator with automatic code generation for unmanned aircraft system. In Proceedings of the 50th Hawaii international conference on system sciences.

  61. Martins, G. S., Portugal, D., & Rocha, R. P. (2014). A comparison of general-purpose foss compression techniques for efficient communication in cooperative multi-robot tasks. In 2014 11th international conference on informatics in control, automation and robotics (ICINCO) (Vol. 2, pp. 136–147).

  62. McGhan, C. L., Nasir, A., & Atkins, E. M. (2015). Human intent prediction using markov decision processes. Journal of Aerospace Information Systems., 12, 393–397.

    Article  Google Scholar 

  63. Mechraoui, A., Khan, Z. H., Thiriet, J. M., & Gentil, S. (2009). Co-design for wireless networked control of an intelligent mobile robot. In International conference on informatics in control, automation and robotics (ICINCO) (p. 7).

  64. Messous, M. A., Sedjelmaci, H., & Senouci, S. M. (2017). Implementing an emerging mobility model for a fleet of uavs based on a fuzzy logic inference system. Pervasive and Mobile Computing, 42, 393–410.

    Article  Google Scholar 

  65. Messous, M. A., Senouci, S. M., & Sedjelmaci, H. (2016). Network connectivity and area coverage for UAV fleet mobility model with energy constraint. In Wireless communications and networking conference (WCNC), 2016 IEEE (pp. 1–6).

  66. Min, B. C., Kim, Y., Lee, S., Jung, J. W., & Matson, E. T. (2016). Finding the optimal location and allocation of relay robots for building a rapid end-to-end wireless communication. Ad Hoc Networks, 39, 23–44.

    Article  Google Scholar 

  67. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Noura, H., & Mahmoud, S. (2017). UAVFog: A UAV-based fog computing for internet of things. In 2017 IEEE SmartWorld, ubiquitous intelligence & computing, advanced & trusted computed, scalable computing & communications, cloud & big data computing, internet of people and smart city innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI) (pp. 1–8). https://doi.org/10.1109/UIC-ATC.2017.8397657.

  68. Mzahm, A. M., Ahmad, M. S., & Tang, A. Y. (2013). Agents of things (AoT): An intelligent operational concept of the internet of things (IoT). In 2013 13th international conference on intelligent systems design and applications (ISDA) (pp. 159–164).

  69. Narasimhan, R., & Cox, D. C. (1998). A handoff algorithm for wireless systems using pattern recognition. In The ninth IEEE international symposium on personal, indoor and mobile radio communications (Vol. 1, pp. 335–339). https://doi.org/10.1109/pimrc.1998.733570.

  70. Niitsuma, M., Beppu, W., Korondi, P., Kovács, S., & Hashimoto, H. (2011). Monitoring system based on ethologically inspired human-robot communication in intelligent space. In 8th Asian control conference (ASCC) (pp. 701–705).

  71. O’Shea, T. J., & Hoydis, J. (2017). An introduction to machine learning communications systems. arXiv preprint arXiv:1702.00832.

  72. O’Shea, T. J., Karra, K., & Clancy, T. C. (2017). Learning approximate neural estimators for wireless channel state information. arXiv preprint arXiv:1707.06260.

  73. Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert systems with applications, 36(1), 2–17.

    Article  Google Scholar 

  74. Park, T., Abuzainab, N., & Saad, W. (2016). Learning how to communicate in the internet of things: Finite resources and heterogeneity. IEEE Access, 4, 7063–7073.

    Article  Google Scholar 

  75. Prieto, A., Becerra, J., Bellas, F., & Duro, R. J. (2010). Open-ended evolution as a means to self-organize heterogeneous multi-robot systems in real time. Robotics and Autonomous Systems, 58(12), 1282–1291.

    Article  Google Scholar 

  76. Rampinelli, M., Covre, V. B., de Queiroz, F. M., Vassallo, R. F., Bastos-Filho, T. F., & Mazo, M. (2014). An intelligent space for mobile robot localization using a multi-camera system. Sensors, 14(8), 15039–15064.

    Article  Google Scholar 

  77. Ray, P. P. (2016). Internet of robotic things: Concept, technologies, and challenges. IEEE Access, 4, 9489–9500.

    Article  Google Scholar 

  78. Razafimandimby, C., Loscri, V., & Vegni, A. M. (2016). A neural network and iot based scheme for performance assessment in internet of robotic things. In 2016 IEEE first international conference on internet-of-things design and implementation (IoTDI) (pp. 241–246).

  79. Razafimandimby, C., Loscri, V., & Vegni, A. M. (2018). Towards efficient deployment in Internet of Robotic Things. In Integration, interconnection, and interoperability of IoT systems (pp. 21–37). Cham: Springer.

  80. Razi, A., Wang, C., Almaraghi, F., Huang, Q., Zhang, Y., Lu, H., & Rovira-Sugranes, A. (2018). Predictive routing for wireless networks: Robotics-based test and evaluation platform. In 2018 IEEE 8th annual computing and communication workshop and conference (CCWC) (pp. 993–999).

  81. Roy Chowdhury, A. (2017). IoT and robotics: A synergy. PeerJ Preprints, 5, e2760v1.

  82. Salamat, B., & Tonello, A. M. (2017). Stochastic trajectory generation using particle swarm optimization for quadrotor unmanned aerial vehicles (UAVs). Aerospace, 4(2), 27.

    Article  Google Scholar 

  83. Sandry, E. (2015). Re-evaluating the form and communication of social robots. International Journal of Social Robotics, 7(3), 335–346.

    Article  Google Scholar 

  84. Schleich, J., Panchapakesan, A., Danoy, G., & Bouvry, P. (2013). UAV fleet area coverage with network connectivity constraint. In Proceedings of the 11th ACM international symposium on Mobility management and wireless access (pp. 131–138).

  85. Scilimati, V., Petitti, A., Boccadoro, P., Colella, R., Di Paola, D., Milella, A., & Grieco, A. (2017). Industrial internet of things at work: A case study analysis in robotic-aided environmental monitoring. In IET wireless sensor systems.

  86. Selma, B., & Chouraqui, S. (2013). Neuro-fuzzy controller to navigate an unmanned vehicle. SpringerPlus, 2(1), 188.

    Article  Google Scholar 

  87. Sharma, P., Liu, H., Wang, H., & Zhang, S. (2017). Securing wireless communications of connected vehicles with artificial intelligence. In 2017 IEEE international symposium on technologies for homeland security (HST) (pp. 1–7).

  88. Sharma, V., Bennis, M., & Kumar, R. (2016). UAV-assisted heterogeneous networks for capacity enhancement. IEEE Communications Letters, 20(6), 1207–1210.

    Article  Google Scholar 

  89. Sharma, V., Chen, H. C., & Kumar, R. (2017). Driver behaviour detection and vehicle rating using multi-UAV coordinated vehicular networks. Journal of Computer and System Sciences, 86, 3–32.

    Article  Google Scholar 

  90. Sharma, V., & Kumar, R. (2015). An opportunistic cross layer design for efficient service dissemination over flying ad hoc networks (FANETs). In 2015 2nd international conference on electronics and communication systems (ICECS) (pp. 1551–1557).

  91. Sharma, V., & Kumar, R. (2017). Cooperative frameworks and network models for flying ad hoc networks: A survey. In Concurrency and computation: Practice and experience (Vol. 29, no. 4).

  92. Sharma, V., & Kumar, R. (2017). G-FANET: An ambient network formation between ground and flying ad hoc networks. Telecommunication Systems, 65(1), 31–54.

    Article  Google Scholar 

  93. Sharma, V., Kumar, R., & Rana, P. S. (2015). Self-healing neural model for stabilization against failures over networked UAVs. IEEE Communications Letters, 19(11), 2013–2016.

    Article  Google Scholar 

  94. Sharma, V., Sabatini, R., & Ramasamy, S. (2016). UAVs assisted delay optimization in heterogeneous wireless networks. IEEE Communications Letters, 20(12), 2526–2529.

    Article  Google Scholar 

  95. Sharma, V., Sabatini, R., Ramasamy, S., Srinivasan, K., & Kumar, R. (2016). EFF-FAS: Enhanced fruit fly optimization based search and tracking by flying ad hoc swarm. In Computing (IJAHUC).

  96. Sharma, V., Srinivasan, K., Chao, H. C., Hua, K. L., & Cheng, W. H. (2017). Intelligent deployment of UAVs in 5G heterogeneous communication environment for improved coverage. Journal of Network and Computer Applications, 85, 94–105.

    Article  Google Scholar 

  97. Sharma, V., Srinivasan, K., Kumar, R., Chao, H. C., & Hua, K. L. (2017). Efficient cooperative relaying in flying ad hoc networks using fuzzy-bee colony optimization. The Journal of Supercomputing, 73, 1–31.

    Article  Google Scholar 

  98. Shibata, K. (2017). Communications that emerge through reinforcement learning using a (recurrent) neural network. arXiv preprint arXiv:1703.03543.

  99. Skobelev, P., Simonova, E., Zhilyaev, A., & Travin, V. (2017). Application of multi-agent technology in the scheduling system of swarm of earth remote sensing satellites. Procedia Computer Science, 103, 396–402.

    Article  Google Scholar 

  100. Soni, B., & Sowmya, A. (2013). Victim detection and localisation in an urban disaster site. In 2013 IEEE international conference on robotics and biomimetics (ROBIO) (pp. 2142–2147).

  101. Stender, M., Yan, Y., Karayaka, H. B., Tay, P., & Adams, R. (2017). Simulating micro-robots to find a point of interest under noise and with limited communication using particle swarm optimization. SoutheastCon, 2017, 1–8.

    Google Scholar 

  102. Stottler, D. (2010). Satellite communication scheduling, optimization, and deconfliction using artificial intelligence techniques. AIAA Infotech@ Aerospace 2010 p. 3424.

  103. Tai, L., Li, S., & Liu, M. (2016). A deep-network solution towards model-less obstacle avoidance. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2759–2764).

  104. Tai, L., & Liu, M. (2016). Deep-learning in mobile robotics-from perception to control systems: A survey on why and why not. arXiv preprint arXiv:1612.07139.

  105. Tai, L., Zhang, J., Liu, M., Boedecker, J., & Burgard, W. (2016). A survey of deep network solutions for learning control in robotics: From reinforcement to imitation. arXiv preprint arXiv:1612.07139.

  106. Tripathi, N. D., Reed, J. H., & Van Landingham, H. F. (1998). Pattern classification based handoff using fuzzy logic and neural nets. In 1998 IEEE international conference on communications, 1998. ICC 98. Conference record (Vol. 3, pp. 1733–1737). https://doi.org/10.1109/icc.1998.683126.

  107. Valente Klaine, P., Imran, M. A., Onireti, O., & Souza, R. D. (2017). A survey of machine learning techniques applied to self organizing cellular networks. IEEE Communications Surveys and Tutorials., 19, 2392–2431.

    Article  Google Scholar 

  108. Vermesan, O., Bröring, A., Tragos, E., Serrano, M., Bacciu, D., Chessa, S., et al. (2017). Internet of robotic things: Converging sensing/actuating, hypoconnectivity, artificial intelligence and IoT platforms. In O. Vermesan & J. Bacquet (Eds.), Cognitive hyperconnected digital transformation: Internet of things intelligence evolution (pp. 1–35). River Publishers.

  109. Vincent, P., & Rubin, I. (2004) A framework and analysis for cooperative search using UAV swarms. In Proceedings of the 2004 ACM symposium on applied computing (pp. 79–86).

  110. Wang, Z., Mülling, K., Deisenroth, M. P., Ben Amor, H., Vogt, D., Schölkopf, B., et al. (2013). Probabilistic movement modeling for intention inference in human-robot interaction. The International Journal of Robotics Research, 32(7), 841–858.

    Article  Google Scholar 

  111. Wazid, M., Das, A. K., & Lee, J. H. (2018). Authentication protocols for the internet of drones: Taxonomy, analysis and future directions. Journal of Ambient Intelligence and Humanized Computing. https://doi.org/10.1007/s12652-018-1006-x.

  112. Yu, W. W. H., & Changhua, H. (2001). Resource reservation in wireless networks based on pattern recognition. In International joint conference on neural networks, 2001. Proceedings. IJCNN ’01 (Vol. 3, pp. 2264–2269). https://doi.org/10.1109/ijcnn.2001.938519

  113. Zaouche, L., Natalizio, E., & Bouabdallah, A. (2015). ETTAF: Efficient target tracking and filming with a flying ad hoc network. In Proceedings of the 1st international workshop on experiences with the design and implementation of smart objects (pp. 49–54).

  114. Zhang, B., Liu, C. H., Tang, J., Xu, Z., Ma, J., & Wang, W. (2018). Learning-based energy-efficient data collection by unmanned vehicles in smart cities. IEEE Transactions on Industrial Informatics, 14(4), 1666–1676.

    Article  Google Scholar 

  115. Zhang, L., Diao, X., & Ma, O. (2017). A preliminary study on a robot’s prediction of human intention. In: 2017 IEEE 7th annual international conference on CYBER technology in automation, control, and intelligent systems (CYBER) (pp. 1446–1450). IEEE.

  116. Zhang, X., Lütteke, F., Ziegler, C., & Franke, J. (2016). Self-learning RRT* algorithm for mobile robot motion planning in complex environments. In E. Menegatti, N. Michael, K. Berns, & H. Yamaguchi (Eds.), Intelligent autonomous systems 13. Advances in intelligent systems and computing (Vol. 302, pp. 57–69). Cham: Springer.

  117. Zhong, X., & Zhou, Y. (2014). A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems. Machine Intelligence and Bio-inspired Computation: Theory and Applications VIII, 9119, 15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. H. Alsamhi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsamhi, S.H., Ma, O. & Ansari, M.S. Survey on artificial intelligence based techniques for emerging robotic communication. Telecommun Syst 72, 483–503 (2019). https://doi.org/10.1007/s11235-019-00561-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-019-00561-z

Keywords

Navigation